Skip to main content

Discrete-Log-Based Signatures May Not Be Equivalent to Discrete Log

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNSC,volume 3788)

Abstract

We provide evidence that the unforgeability of several discrete-log based signatures like Schnorr signatures cannot be equivalent to the discrete log problem in the standard model. This contradicts in nature well-known proofs standing in weakened proof methodologies, in particular proofs employing various formulations of the Forking Lemma in the random oracle Model. Our impossibility proofs apply to many discrete-log-based signatures like ElGamal signatures and their extensions, DSA, ECDSA and KCDSA as well as standard generalizations of these, and even RSA-based signatures like GQ. We stress that our work sheds more light on the provable (in)security of popular signature schemes but does not explicitly lead to actual attacks on these.

Keywords

  • Success Probability
  • Signature Scheme
  • Random Oracle
  • Random Oracle Model
  • Security Notion

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. ANSI X9.62, Public-Key fryptography for the financial services industry: the elliptic curve digital standard algorithm (ECDSA), American National Standards Institute (1999)

    Google Scholar 

  2. Bellare, M., Boldyreva, A., Palacio, A.: An Un-Instantiable Random-Oracle-Model Scheme for a Hybrid-Encryption Problem. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 171–188. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  3. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The One-More-RSA-Inversion Problems and the security of Chaum’s Blind Signature Scheme. J. Cryptology 16(3), 185–215 (2003)

    MATH  CrossRef  MathSciNet  Google Scholar 

  4. Bellare, M., Palacio, A.: GQ and Schnorr Identification Schemes: Proofs of Security against Impersonation under Active and Concurrent Attacks. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  5. Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  6. Brickell, E., Pointcheval, D., Vaudenay, S., Yung, M.: Design Validations for discrete logarithm based signature schemes. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 276–292. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  7. Brown, D.R.L.: Generic Groups, Collision Resistance and ECDSA. Des. Codes Cryptography 35, 119–152 (2005)

    MATH  CrossRef  Google Scholar 

  8. Canetti, R., Goldreich, O., Halevi, S.: The Random Oracle Methodology, Revisited. J. Assoc. Comput. Mach. 51(4), 557–594 (2004)

    MathSciNet  MATH  Google Scholar 

  9. FIPS 186. Digital Signature Standard, Federal Information Processing Standards Publication 186. US Department of Commerce/NIST, National Technical Information Service, Springfield, Virginia (1994)

    Google Scholar 

  10. Dent, A.: Adapting the weaknesses of the random oracle model to the generic model. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 100–109. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  11. Dodis, Y., Reyzin, L.: On the Power of Claw-Free Permutations. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 55–73. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  12. El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. IEEE Transactions on Information Theory IT–31(4), 469–472 (1985)

    Google Scholar 

  13. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

    Google Scholar 

  14. Goldwasser, S., Tauman, Y.: On the (In)security of the Fiat-Shamir Paradigm. In: FOCS 2003, pp. 102–122. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  15. Guillou, L.C., Quisquater, J.-J.: A ”Paradoxical” Identity-Based Signature Scheme Resulting from Zero-Knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 216–231. Springer, Heidelberg (1990)

    Google Scholar 

  16. Horster, P., Petersen, H., Michels, M.: Meta-ElGamal signature schemes. In: CCS 1994: Proceedings of the 2nd ACM Conference on Computer and communications security, pp. 96–107. ACM Press, New York (1994)

    CrossRef  Google Scholar 

  17. KCDSA, Digital Signature Mechanism with Appendix - Part 2: Certificate-Based Digital Signature Algorithm (KCDSA), TTA.KO -12.0001 (1998)

    Google Scholar 

  18. Nielsen, J.B.: Separating Random Oracle Proofs from Complexity Theoretic Proofs: The Non-committing Encryption Case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  19. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind Signatures. J. Cryptology 13(3), 361–396 (2000)

    MATH  CrossRef  Google Scholar 

  20. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptology 4(3), 161–174 (1991)

    MATH  CrossRef  MathSciNet  Google Scholar 

  21. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

    Google Scholar 

  22. Shoup, V.: Lower Bounds for Discrete Logarithms and Related Problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Paillier, P., Vergnaud, D. (2005). Discrete-Log-Based Signatures May Not Be Equivalent to Discrete Log. In: Roy, B. (eds) Advances in Cryptology - ASIACRYPT 2005. ASIACRYPT 2005. Lecture Notes in Computer Science, vol 3788. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11593447_1

Download citation

  • DOI: https://doi.org/10.1007/11593447_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30684-9

  • Online ISBN: 978-3-540-32267-2

  • eBook Packages: Computer ScienceComputer Science (R0)