Advertisement

Universally Anonymizable Public-Key Encryption

  • Ryotaro Hayashi
  • Keisuke Tanaka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3788)

Abstract

We first propose the notion of universally anonymizable public-key encryption. Suppose that we have the encrypted data made with the same security parameter, and that these data do not satisfy the anonymity property. Consider the situation that we would like to transform these encrypted data to those with the anonymity property without decrypting these encrypted data. In this paper, in order to formalize this situation, we propose a new property for public-key encryption called universal anonymizability. If we use a universally anonymizable public-key encryption scheme, not only the person who made the ciphertexts, but also anyone can anonymize the encrypted data without using the corresponding secret key. We then propose universally anonymizable public-key encryption schemes based on the ElGamal encryption scheme, the Cramer-Shoup encryption scheme, and RSA-OAEP, and prove their security.

Keywords

encryption anonymity key-privacy ElGamal Cramer- Shoup RSA-OAEP 

References

  1. 1.
    Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-Privacy in Public-Key Encryption. In: Boyd, (ed.) [3], pp. 566–582, Full version of this paper, available via http://www-cse.ucsd.edu/users/mihir/
  2. 2.
    Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption – How to Encrypt with RSA. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  3. 3.
    Boyd, C. (ed.): ASIACRYPT 2001. LNCS, vol. 2248. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  4. 4.
    Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing Chosen-Ciphertext Security. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)Google Scholar
  6. 6.
    Desmedt, Y.: Securing traceability of ciphertexts: Towards a secure software escrow scheme. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 147–157. Springer, Heidelberg (1995)Google Scholar
  7. 7.
    Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is Secure under the RSA Assumption. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 260–274. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Galbraith, S.D., Mao, W.: Invisibility and Anonymity of Undeniable and Confirmer Signatures. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 80–97. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Halevi, S.: A Sufficient Condition for Key-Privacy. IACR Cryptology ePrint Archive (2005), http://eprint.iacr.org/2005/005.pdf
  10. 10.
    Hayashi, R., Okamoto, T., Tanaka, K.: An RSA Family of Trap-door Permutations with a Common Domain and its Applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 291–304. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Hayashi, R., Tanaka, K.: The Sampling Twice Technique for the RSA-based Cryptosystems with Anonymity. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 216–233. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Lucks, S.: A Variant of the Cramer-Shoup Cryptosystem for Groups of Unknown Order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 27–45. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Rivest, R.L., Shamir, A., Tauman, Y.: How to Leak a Secret. In: Boyd, (ed.) [3], pp. 552–565Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ryotaro Hayashi
    • 1
  • Keisuke Tanaka
    • 1
  1. 1.Dept. of Mathematical and Computing SciencesTokyo Institute of TechnologyTokyoJapan

Personalised recommendations