Quantum Anonymous Transmissions

  • Matthias Christandl
  • Stephanie Wehner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3788)


We consider the problem of hiding sender and receiver of classical and quantum bits (qubits), even if all physical transmissions can be monitored. We present a quantum protocol for sending and receiving classical bits anonymously, which is completely traceless: it successfully prevents later reconstruction of the sender. We show that this is not possible classically. It appears that entangled quantum states are uniquely suited for traceless anonymous transmissions. We then extend this protocol to send and receive qubits anonymously. In the process we introduce a new primitive called anonymous entanglement, which may be useful in other contexts as well.


Collision Detection Broadcast Channel Quantum Protocol Byzantine Agreement Classical Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alpern, B., Schneider, F.B.: Key exchange using keyless cryptography. Information Processing Letters 16, 79–81 (1983)CrossRefGoogle Scholar
  2. 2.
    Ambainis, A., Buhrman, H., Röhrig, H., Dodis, Y.: Multiparty quantum coin flipping. In: Proceedings of CCC 2003, pp. 250–259 (2003)Google Scholar
  3. 3.
    Anonymizer. Anonymizing proxy,
  4. 4.
    Bennett, C., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters 70, 1895–1899 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ben-Or, M., Mayers, D.: General security definition and composability for quantum & classical protocols. quant-ph/0409062 (2004)Google Scholar
  6. 6.
    Berthold, O., Federrath, H., Köpsell, S.: Web MIXes: A system for anonymous and unobservable Internet access. In: Federrath, H. (ed.) Designing Privacy Enhancing Technologies. LNCS, vol. 2009, pp. 115–129. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Boykin, P.: Information Security and Quantum Mechanics: Security of Quantum Protocols. PhD thesis, University of California, Los Angeles (2002)Google Scholar
  8. 8.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: Electronic Colloquium on Computational Complexity (ECCC), p. 16 (2001)Google Scholar
  9. 9.
    Canetti, R., Gennaro, R.: Incoercible Multiparty Computation (extended abstract). In: Proceedings of 37th IEEE FOCS, pp. 504–513 (1996)Google Scholar
  10. 10.
    Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the ACM 24(2), 84–88 (1981)CrossRefGoogle Scholar
  11. 11.
    Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient untraceability. Journal of Cryptology 1, 65–75 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols. In: Proceedings of 20th ACM STOC, pp. 11–19 (1988)Google Scholar
  13. 13.
    Crépeau, C., Gottesman, D., Smith, A.: Secure multiparty quantum computation. In: Proceedings of 34th ACM STOC, pp. 643–652 (2002)Google Scholar
  14. 14.
  15. 15.
    Dingledine, R.: The free haven project: Design and deployment of an anonymous secure data haven. Master’s thesis, Massachusetts Institute for Technology (2000)Google Scholar
  16. 16.
    Dingledine, R., Mathewson, N., Syverson, P.: Tor: The Second-Generation Onion Router. In: Proceedings of the 13th USENIX Security Symposium, pp. 303–320 (2004)Google Scholar
  17. 17.
    Fitzi, M., Gisin, N., Maurer, U., von Rotz, O.: Unconditional byzantine agreement and multi-party computation secure against dishonest minorities from scratch. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 482–501. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Goldberg, I.: Privacy-enhancing technologies for the internet, ii: Five years later. In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 1–12. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Goldberg, I., Wagner, D., Brewer, E.: Privacy-enhancing technologies for the internet. In: Proceedings of 42nd IEEE Spring COMPCON (1997),
  20. 20.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game—or—a completeness theorem for protocols with honest majority. In: Proceedings of 19th ACM STOC, pp. 218–229 (1987)Google Scholar
  21. 21.
    Greenberger, D.M., Horne, M.A., Zeilinger, A.: Bell’s Theorem, Quantum Theory, and Conceptions of the Universe. Kluwer, Dordrecht (1989)Google Scholar
  22. 22.
    Helsingius, J.: Email anonymizing server: (1996)Google Scholar
  23. 23.
    Martin, D.: Local Anonymity in the Internet. PhD thesis, Boston University (1999)Google Scholar
  24. 24.
    MixMaster. Implementation of a remailer,
  25. 25.
    Müller-Quade, J., Imai, H.: Anonymous oblivious transfer. cs.CR/0011004 (2000)Google Scholar
  26. 26.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  27. 27.
    Pfitzmann, A.: How to implement isdns without user observability - some remarks. Technical report, Universität Karlsruhe (1985)Google Scholar
  28. 28.
    Pfitzmann, A.: Dienstintegrierende Kommunikationsnetze mit teilnehmerueberpruefbarem Datenschutz. PhD thesis, Fakultaet fuer Informatik, Universität Karlsruhe (1989)Google Scholar
  29. 29.
    Pfitzmann, B., Waidner, M.: Composition and Integrity Preservation of Secure Reactive Systems. In: 7th ACM Conference on Computer and Communications Security, pp. 245–254 (2000)Google Scholar
  30. 30.
    Reiter, M.K., Rubin, A.D.: Crowds: anonymity for Web transactions. ACM Transactions on Information and System Security 1(1), 66–92 (1998)CrossRefGoogle Scholar
  31. 31.
    Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423, 623–656 (1948)Google Scholar
  32. 32.
    Stajano, F., Anderson, R.J.: The cocaine auction protocol: On the power of anonymous broadcast. In: Information Hiding, pp. 434–447 (1999)Google Scholar
  33. 33.
    Syverson, P.F., Goldschlag, D.M., Reed, M.G.: Anonymous connections and onion routing. In: IEEE Symposium on Security and Privacy, pp. 44–54 (1997)Google Scholar
  34. 34.
    Tanenbaum, A.S.: Computer Networks, 3rd edn. Prentice-Hall, Englewood Cliffs (1996)Google Scholar
  35. 35.
    Tor: An anonymous Internet communication system,
  36. 36.
    Unruh Simulatable, D.: security for quantum protocols. quant-ph/0409125Google Scholar
  37. 37.
    Waidner, M., Pfitzmann, B.: Unconditional sender and recipient untraceability in spite of active attacks - some remarks. Technical report, Universität Karlsruhe (1989)Google Scholar
  38. 38.
    Waidner, M., Pfitzmann, B.: The dining cryptographers in the disco: unconditional sender and recipient untraceability with computationally secure serviceability. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 690–690. Springer, Heidelberg (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Matthias Christandl
    • 1
  • Stephanie Wehner
    • 2
  1. 1.Centre for Quantum Computation, Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeUnited Kingdom
  2. 2.Centrum voor Wiskunde en InformaticaAmsterdamThe Netherlands

Personalised recommendations