Updatable Zero-Knowledge Databases

  • Moses Liskov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3788)


Micali, Rabin, and Kilian [9] recently introduced zero- knowledge sets and databases, in which a prover sets up a database by publishing a commitment, and then gives proofs about particular values. While an elegant and useful primitive, zero-knowledge databases do not offer any good way to perform updates. We explore the issue of updating zero-knowledge databases. We define and discuss transparent updates, which (1) allow holders of proofs that are still valid to update their proofs, but (2) otherwise maintain secrecy about the update.

We give rigorous definitions for transparently updatable zero- knowledge databases, and give a practical construction based on the Chase et al [2] construction, assuming that verifiable random functions exist and that mercurial commitments exist, in the random oracle model. We also investigate the idea of updatable commitments, an attempt to make simple commitments transparently updatable. We define this new primitive and give a simple secure construction.


zero-knowledge databases zero-knowledge sets transparent updates zero-knowledge protocols commitments updatable commitments 


  1. 1.
    Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive zero-knowledge. SIAM. Journal on Computing 20(6), 1084–1118 (1991)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Chase, M., Healy, A., Lysyanskaya, A., Malkin, T., Reyzin, L.: Mercurial commitments with applications to zero-knowledge sets. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 422–439. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. Journal of the ACM 38(1), 691–729 (1991)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Kilian, J.: Efficiently committing to databases. TR 97-040, NEC Research Institute (1997)Google Scholar
  6. 6.
    Lysyanskaya, A.: Unique signatures and verifiable random functions from the DH-DDH separation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, p. 597. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)Google Scholar
  8. 8.
    Micali, S., Rabin, M.: Hashing on strings, cryptography, and protection of privacy. In: Proceedings of Compression and Complexity of Sequences, June 11 – 13, p. 1. IEEE Computer Society, Los Alamitos (1997)Google Scholar
  9. 9.
    Micali, S., Rabin, M., Kilian, J.: Zero-knowledge sets. In: 44th Annual Symposium on Foundations of Computer Science, October 2003, IEEE, Cambridge (2003)Google Scholar
  10. 10.
    Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: 40th Annual Symposium on Foundations of Computer Science, October 1999, pp. 120–130. IEEE, New York (1999)Google Scholar
  11. 11.
    Ostrovsky, R., Rackoff, C., Smith, A.: Efficient proofs of consistency for generalized queries on a committed database. In: Proceedings of ICALP 2004 (2004)Google Scholar
  12. 12.
    Pedersen, T.P.: A threshold cryptosystem without a trusted party (extended abstract). In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Moses Liskov
    • 1
  1. 1.Computer Science DepartmentThe College of William and MaryWilliamsburgUSA

Personalised recommendations