S_Kernel: A New Symmetry Measure

  • Vito Di Gesù
  • Bertrand Zavidovique
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3776)


Symmetry is an important feature in vision. Several detectors or transforms have been proposed. In this paper we concentrate on a measure of symmetry. Given a transform S, the kernel SK of a pattern is defined as the maximal included symmetric sub-set of this pattern. It is easily proven that, in any direction, the optimal axis corresponds to the maximal correlation of a pattern with its flipped version. For the measure we compute a modified difference between respective surfaces of a pattern and its kernel. That founds an efficient algorithm to attention focusing on symmetric patterns.


Symmetry transforms symmetry measure correlation feature extraction 


  1. 1.
    Khöler, W., Wallach, H.: Figural after-effects: an investigation of visual processes. Proc. Amer. phil. Soc. 88, 269–357 (1944)Google Scholar
  2. 2.
    Zabrodsky, H.: Symmetry - A review, Technical Report 90-16, CS Dep. The Hebrew University of Jerusalem (1990)Google Scholar
  3. 3.
    Boyton, R.M., Elworth, C.L., Onley, J., Klingberg, C.L.: Form discrimination as predicted by overlap and area, RADC-TR-60-158 (1960)Google Scholar
  4. 4.
    Zusne, L.: Measures of symmetry. Perception and Psychophysics 9(3B) (1971)Google Scholar
  5. 5.
    Yodogawa, E.: Symmetropy, an entropy-like measure of visual symmetry. Perception and Psychophysics 32(3) (1983)Google Scholar
  6. 6.
    O’Mara, D.: Automated facial metrology, chapter 4: Symmetry detection and measurement. PhD thesis (February 2002)Google Scholar
  7. 7.
    Blum, H., Nagel, R.N.: Shape description using weighted symmetric axis features. Pattern recognition 10, 167–180 (1978)zbMATHCrossRefGoogle Scholar
  8. 8.
    Brady, M., Asada, H.: Smoothed Local Symmetries and their implementation. The International Journal of Robotics Research 3(3), 36–61 (1984)CrossRefGoogle Scholar
  9. 9.
    Sewisy, A., Lebert, F.: Detection of ellipses by finding lines of symmetry in the images via an Hough transform applied to staright lines. Image and Vision Computing 19(12), 857–866 (2001)CrossRefGoogle Scholar
  10. 10.
    Fukushima, S.: Division-based analysis of symmetry and its applications. IEEE PAMI 19(2) (1997)Google Scholar
  11. 11.
    Mukhergee, D.P., Zisserman, A., Brady, M.: Shape form symmetry: detecting and exploiting symmetry in affine images. Philosofical Transaction of Royal Society of London Academy 351, 77–101 (1995)CrossRefGoogle Scholar
  12. 12.
    Chan, T.J., Cipolla, R.: Symmetry detection through local skewed symmetries. Image and Vision Computing 13(5), 439–455 (1995)CrossRefGoogle Scholar
  13. 13.
    Sato, J., Cipolla, R.: Affine integral invariants for extracting symmetry axes. Image and Vision Computing 15(5), 627–635 (1997)CrossRefGoogle Scholar
  14. 14.
    Marola, G.: On the detection of the axes of symmetry of symmetric and almost symmetric planar images. IEEE Trans.of PAMI 11, 104–108 (1989)zbMATHGoogle Scholar
  15. 15.
    Gesù, V.D., Valenti, C.: Symmetry operators in computer vision. Vistas in Astronomy, Pergamon 40(4), 461–468 (1996)CrossRefGoogle Scholar
  16. 16.
    Manmatha, R., Sawhney, H.: Finding symmetry in Intensity Images, Technical Report (1997)Google Scholar
  17. 17.
    Shen, D., Ip, H., Cheung, K.T., Teoh, E.K.: Symmetry detection by Generalized complex moments: a close-form solution. IEEE PAMI 21(5) (1999)Google Scholar
  18. 18.
    Bigun, J., DuBuf, J.M.H.: N-folded symmetries by complex moments in Gabor space and their application to unsupervized texture segmentation. IEEE PAMI 16(1) (1994)Google Scholar
  19. 19.
    Kiryati, N., Gofman, Y.: Detecting symmetry in grey level images (the global optimization approach) (1997) (preprint)Google Scholar
  20. 20.
    Shen, D., Ip, H., Teoh, E.K.: An energy of assymmetry for accurate detection of global reflexion axes. Image Vision and Computing 19, 283–297 (2001)CrossRefGoogle Scholar
  21. 21.
    Cross, A.D.J., Hancock, E.R.: Scale space vector fields for symmetry detection. Image and Vision Computing, Volume 17(5-6), 337–345 (1999)CrossRefGoogle Scholar
  22. 22.
    Di Gesù, V., Valenti, C.: Detection of regions of interest via the Pyramid Discrete Symmetry Transform. In: Solina, Kropatsch, Klette, Bajcsy (eds.) Advances in Computer Vision, Springer, Heidelberg (1997)Google Scholar
  23. 23.
    Reisfeld, D., Wolfson, H., Yeshurun, Y.: Detection of interest points using symmetry. In: 3rd IEEE ICCV, Osaka (1990)Google Scholar
  24. 24.
    Bonneh, Y., Reisfeld, D., Yeshurun, Y.: Texture discrimination by local generalized symmetry. In: 4th IEEE ICCV, Berlin (1993)Google Scholar
  25. 25.
    Santini, S., Jain, R.: Similarity measures. IEEE PAMI 21(9) (1999)Google Scholar
  26. 26.
    Heijmans, H.J.A.M., Tuzikof, A.: Similarity and Symmetry measuresfro convex shapes using Minkowski addition. IEEE PAMI 20(9), 980–993 (1998)Google Scholar
  27. 27.
    Zabrodsky, H., Peleg, S., Avnir, D.: Symmetry as a continuous feature. IEEE PAMI 17(12) (1995)Google Scholar
  28. 28.
    Kanatani, K.: Comments on Symmetry as a continuous feature. IEEE PAMI 19(3) (1997)Google Scholar
  29. 29.
    Masuda, T., Yamamoto, K., Yamada, H.: Detection of partial symmetyr using correlation with rotated-reflected images. Pattern Recognition 26(8) (1993)Google Scholar
  30. 30.
    O’Maraa, D., Owens, R.: Measuring bilateral symmetry in digital images. IEEE TENCON, Digital signal processing aplications (1996)Google Scholar
  31. 31.
    Kazhdan, M., Chazelle, B., Dobkin, D., Finkelstein, A., Funkhouser, T.: A reflective symmetry descriptor. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 642–656. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  32. 32.
    Di Gesu, V., Zavidovique, B.: A note on the Iterative Object Symmetry Transform. Pattern Recognition Letters, Pattern Recognition Letters 25, 1533–1545 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Vito Di Gesù
    • 1
    • 2
  • Bertrand Zavidovique
    • 2
  1. 1.DMAUniversità di PalermoItaly
  2. 2.IEFUniversity of Paris XIORSAYFrance

Personalised recommendations