A Comparative Study of Different Texture Segmentation Techniques

  • Madasu Hanmandlu
  • Shilpa Agarwal
  • Anirban Das
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3776)

Abstract

Image segmentation techniques are very useful in the analysis of aerial images, biomedical images and seismic images as well as in the automation of industrial applications. The paper presents a few texture-specific features for the segmentation of texture images. We will present four approaches to texture segmentation, viz, descriptor based, heuristic function based, defuzzified feature based and Mask feature based. We have mainly used FCM for texture segmentation.

Keywords

Texture segmentation entropy descriptors texture energy measure defuzzified feature 

References

  1. 1.
    Chaudhuri, B.B., Sarkar, N.: Texture Segmentation Using Fractal Dimension. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(1) (1995)Google Scholar
  2. 2.
    Hanmandlu, M., Madasu, V.K., Vasikalra, S.: A Fuzzy Approach to Texture Segmentation. In: Proceeding of ITCC 2004: Coding and Computing (2004)Google Scholar
  3. 3.
    Laws, K.I.: Texture Energy Measures. In: DARPA Image Understanding Workshop, DARPA, Los Altos, CA, pp. 47–51 (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Madasu Hanmandlu
    • 1
  • Shilpa Agarwal
    • 2
  • Anirban Das
    • 3
  1. 1.Dept. of Electrical EngineeringI.I.T Delhi, Hauz KhasNew DelhiIndia
  2. 2.Dept. of Electrical EngineeringI.I.T Delhi, Hauz KhasNew DelhiIndia
  3. 3.Dept. of Computer ScienceJamia Millia Islamia UniversityNew DelhiIndia

Personalised recommendations