Advertisement

An Improved Differential Evolution Scheme for Noisy Optimization Problems

  • Swagatam Das
  • Amit Konar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3776)

Abstract

Differential Evolution (DE) is a simple and surprisingly efficient algorithm for global optimization over continuous spaces. It has reportedly outperformed many versions of EA and other search heuristics when tested over both benchmark and real world problems. However the performance of DE deteriorates severely if the fitness function is noisy and continuously changing. In this paper we propose an improved DE scheme which can efficiently track the global optima of a noisy function. The scheme performs better than the classical DE, PSO, and an EA over a set of benchmark noisy problems.

References

  1. 1.
    Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence through Simulated Evolution. John Wiley & Sons, New York (1966)zbMATHGoogle Scholar
  2. 2.
    Rechenberg, I.: Evolution Strategy: Optimization of technical systems by means of biological evolution. In: Fromman-Holzboog, Stuttgart (1973)Google Scholar
  3. 3.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  4. 4.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. IEEE Int. conf. Neural Networks, pp. 1942–1948 (1995)Google Scholar
  5. 5.
    Krink, T., Bodgan, F., Fogel, G.B., Thomson, R.: Noisy Optimization Problems – A Particular Challenge for Differential Evolution? In: Proc. Sixth Congress on Evolutionary Computation (CEC 2004), IEEE Press, Los Alamitos (2004)Google Scholar
  6. 6.
    Markon, S., Arnold, V.D., Bäck, T., Beislstein, T., Beyer, G.-H.: Threshholding – a Selection Operator for Noisy ES. In: Proc. Congress on Evolutionary Computation (CEC 2001), pp. 465–472 (2001)Google Scholar
  7. 7.
    Storn, R., Price, K.: Differential evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization 11(4), 341–359 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Price, K.V.: An introduction to differential evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 79–108. McGrow-Hill, London (1999)Google Scholar
  9. 9.
    Box, G.E.P., Muller, M.E.: A note on the generation of random deviates. Ann. Math. Statistics 29, 610–611 (1958)zbMATHCrossRefGoogle Scholar
  10. 10.
    Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics. Springer, Berlin (2000)zbMATHGoogle Scholar
  11. 11.
    Das, S., Konar, A., Chakraborty, U.K.: Two improved differential evolution schemes for faster global search. In: To appear in the ACM-SIGEVO Proceedings of GECCO, Washington D.C (June 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Swagatam Das
    • 1
  • Amit Konar
    • 1
  1. 1.Dept. of Electronics and Telecommunication EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations