Rough Sets in Perception-Based Computing

Extended Abstract
  • Andrzej Skowron
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3776)


Intelligent systems for many real life problems can be modeled by systems of complex objects and their parts changing and interacting over time. The objects are usually linked by certain dependencies, can cooperate between themselves and are able to perform complex and flexible actions (operations) in an autonomous manner. Such systems are identified as complex dynamical systems [2,40], autonomous multiagent systems [20,40], or swarm intelligent systems (see, e.g., [28,7]).


Boolean Function Multiagent System Complex Object Approximate Reasoning Concept Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anderson, J.R., Lebiere, C.: The Atomic Components of Thought. Lawrence Erlbaum, Mahwah (1998)Google Scholar
  2. 2.
    Bar-Yam, Y.: Dynamics of Complex Systems. Addison-Wesley, Reading (1997)zbMATHGoogle Scholar
  3. 3.
    Barsalou, L.W.: Perceptual symbol systems. Behavioral and Brain Sciences 22, 577–660 (1999)Google Scholar
  4. 4.
    Bazan, J., Skowron, A.: Classifiers based on approximate reasoning schemes. In: Dunin-Keplicz, B., Jankowsk, A., Skowron, A., Szczuka, M. (eds.) Monitoring, Security, and Rescue Tasks in Multiagent Systems MSRAS. Advances in Soft Computing, pp. 191–202. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Bazan, J., Peters, J., Skowron, A.: Behavioral pattern identification through rough set modelling. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W.P., Hu, X. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3642, pp. 688–697. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Behnke, S.: Hierarchical Neural Networks for Image Interpretation. LNCS, vol. 2766. Springer, Heidelberg (2003)zbMATHCrossRefGoogle Scholar
  7. 7.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence. From Natural to Artificial Systems. Oxford University Press, Oxford (1999)zbMATHGoogle Scholar
  8. 8.
    Breiman, L.: Statistical Modeling: The Two Cultures. Statistical Science 16(3), 199–231 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Brown, F.M.: Boolean Reasoning. Kluwer Academic Publishers, Dordrecht (1990)zbMATHGoogle Scholar
  10. 10.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2001)zbMATHGoogle Scholar
  11. 11.
    Dunin-Keplicz, B., Jankowski, A., Skowron, A., Szczuka, M. (eds.): Monitoring, Security, and Rescue Tasks in Multiagent Systems MSRAS. Advances in Soft Computing. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Fahle, M., Poggio, T. (eds.): Perceptual Learning. MIT Press, Cambridge (2002)Google Scholar
  13. 13.
    Frege, G.: Grundlagen der Arithmetik 2. Verlag von Herman Pohle, Jena (1893)Google Scholar
  14. 14.
    Friedman, J.H., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  15. 15.
    Gell-Mann, M.: The Quark and the Jaguar - Adventures in the Simple and the Complex. Little, Brown and Co., London (1994)zbMATHGoogle Scholar
  16. 16.
    Harnad, S. (ed.): Categorical Perception: The Groundwork of Cognition. Cambridge University Press, New York (1987)Google Scholar
  17. 17.
    Kloesgen, W., Żytkow, J. (eds.): Handbook of Knowledge Discovery and Data Mining. Oxford University Press, Oxford (2002)zbMATHGoogle Scholar
  18. 18.
    Łukasiewicz, J.: Die Logischen grundlagen der Wahrscheinlichkeitsrechnung, Kraków (1913); Borkowski, L. (ed.): Jan Łukasiewicz - Selected Works. North Holland Publishing Company, Amsterdam. Polish Scientific Publishers, Warsaw (1970)Google Scholar
  19. 19.
    Leśniewski, S.: Grungzüge eines neuen Systems der Grundlagen der Mathematik. Fundamenta Matemaicae XIV, 1–81 (1929)Google Scholar
  20. 20.
    Luck, M., McBurney, P., Preist, C.: Agent Technology: Enabling Next Generation Computing: A Roadmap for Agent Based Computing. In: AgentLink 2003 (2003)Google Scholar
  21. 21.
    Newell, A.: Unified Theories of Cognition. Harvard University Press, Cambridge (1990)Google Scholar
  22. 22.
    Hoa Nguyen, S., Bazan, J., Skowron, A., Son Nguyen, H.: Layered learning for concept synthesis. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 187–208. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Nguyen, T.T., Skowron, A.: Rough set approach to domain knowledge approximation. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS, vol. 2639, pp. 221–228. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    Paine, R.W., Grossberg, S., Van Gemmert, A.W.A.: A quantitative evaluation of the AVITEWRITE model of handwriting learning. Human Movement Science (2004) (in press)Google Scholar
  25. 25.
    Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough-Neural Computing: Techniques for Computing with Words. Cognitive Technologies series. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  26. 26.
    Pal, S.K., Skowron, A. (eds.): Rough Fuzzy Hybridization: A New Trend in Decision-Making. Springer, Singapore (1999)zbMATHGoogle Scholar
  27. 27.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)zbMATHGoogle Scholar
  28. 28.
    Peters, J.F.: Rough ethology: Towards a biologically-inspired study of collective behavior in intelligent systems with approximation spaces. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 153–174. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  29. 29.
    Peters, J.F., Skowron, A., Synak, P., Ramanna, S.: Rough sets and information granulation. In: De Baets, B., Kaynak, O., Bilgiç, T. (eds.) IFSA 2003. LNCS(LNAI), vol. 2715, pp. 370–377. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  30. 30.
    Poggio, T., Smale, S.: The mathematics of learning: Dealing with data. Notices of the AMS 50(5), 537–544 (2003)zbMATHMathSciNetGoogle Scholar
  31. 31.
    Polkowski, L., Skowron, A.: Rough mereology: A new paradigm for approximate reasoning. International Journal of Approximate Reasoning 15(4), 333–365 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Skowron, A.: Rough sets in KDD (plenary lecture). In: Shi, Z., Faltings, B., Musen, M. (eds.) 16-th World Computer Congress (IFIP 2000): Proceedings of Conference on Intelligent Information Processing (IIP 2000), pp. 1–17. Puishing House of Electronic Industry, Beijing (2000)Google Scholar
  33. 33.
    Skowron, A.: Toward intelligent systems: Calculi of information granules. Bulletin of the International Rough Set Society 5(1-2), 9–30 (2001)Google Scholar
  34. 34.
    Skowron, A.: Approximate reasoning in distributed environments. In: Zhong, N., Liu, J. (eds.) Intelligent Technologies for Information Analysis, pp. 433–474. Springer, Heidelberg (2004)Google Scholar
  35. 35.
    Skowron, A., Stepaniuk, J.: Information granules and rough-neural computing. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing: Techniques for Computing with Words. Cognitive Technologies series, pp. 43–84. Springer, Heidelberg (2004)Google Scholar
  36. 36.
    Skowron, A., Synak, P.: Complex patterns. Fundamenta Informaticae 60(1-4), 351–366 (2004)zbMATHMathSciNetGoogle Scholar
  37. 37.
    Skowron, A., Synak, P.: Reasoning in information maps. Fundamenta Informaticae 59(2-3), 241–259 (2004)zbMATHMathSciNetGoogle Scholar
  38. 38.
    Staab, S., Studer, R. (eds.): Handbook on Ontologies. In: International Handbooks on Information Systems. Springer, Heidelberg (2004)Google Scholar
  39. 39.
    Stone, P.: Layered Learning in Multi-Agent Systems: A Winning Approach to Robotic Soccer. MIT Press, Cambridge (2000)Google Scholar
  40. 40.
    Urmson, C., et al.: High speed navigation of unrehearsed terrain: Red team technology for Grand Challenge 2004, Report CMU-RI-TR-04-37, The Robotics Institute, Carnegie Mellon University (2004)Google Scholar
  41. 41.
    Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)zbMATHGoogle Scholar
  42. 42.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Zadeh, L.A.: A new direction in AI: Toward a Computational Theory of Perceptions. AI Magazine 22(1), 73–84 (2001)Google Scholar
  44. 44.
  45. 45.
  46. 46.
  47. 47.

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Andrzej Skowron
    • 1
  1. 1.Institute of MathematicsWarsaw UniversityWarsawPoland

Personalised recommendations