Small Object Detection and Tracking: Algorithm, Analysis and Application

  • U. B. Desai
  • S. N. Merchant
  • Mukesh Zaveri
  • G. Ajishna
  • Manoj Purohit
  • H. S. Phanish
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3776)


In this paper, we present an algorithm for detection and tracking of small objects, like a ping pong ball or a cricket ball in sports video sequences. It can also detect and track airborne targets in an infrared image sequence. The proposed method uses motion as the primary cue for detection. The detected object is tracked using the multiple filter bank approach. Our method is capable of detecting objects of low contrast and negligible texture content. Moreover, the algorithm also detects point targets. The algorithm has been evaluated using large number of different video clips and the performance is analysed.


Sequential Probability Ratio Test Maneuvering Target Ping Pong Test Pipe Ping Pong Ball 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Braga-Neto, U., Choudhary, M., Goutsias, J.: Automatic target detection and tracking in forward-looking infrared sequences using morphological connected operators. Journal of Electronic Imaging (2004) (in press)Google Scholar
  2. 2.
    Vaswani, N., Agrawal, A.K., Zheng, Q., Chellappa, R.: Moving object detection and compression in IR sequences. In: Bhanu, B., Pavlidis, I. (eds.) Computer Vision beyond the Visible Spectrum, pp. 153–177. Springer, Heidelberg (2003)Google Scholar
  3. 3.
    Chien, S.Y., et al.: Efficient moving object segmentation algorithm using background registration technique. IEEE Transactions on Circuits and Systems for Video Technology 12, 577–586 (2002)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Durucan, E., Ebrahimi, T.: Change detection and background extraction by linear algebra. Proceedings of IEEE 89, 1368–1381 (2001)CrossRefGoogle Scholar
  5. 5.
    Tsaig, Y., Averbuch, A.: Automatic segmentation of moving objects in video sequences: A region labeling approach. IEEE Transactions on Circuits and Systems for Video Technology 12, 597–612 (2002)CrossRefGoogle Scholar
  6. 6.
    Zaveri, M.A., Merchant, S.N., Desai, U.B.: Multiple single pixel dim target detection in infrared image sequence. In: Proc. IEEE International Symposium on Circuits and Systems, Bangkok, pp. 380–383 (2003)Google Scholar
  7. 7.
    Blackman, S., Dempster, R., Broida, T.: Multiple Hypothesis Track Confirmation for Infrared Surveillance Systems. IEEE Transactions on Aerospace and Electronic Systems 29, 810–824 (1993)CrossRefGoogle Scholar
  8. 8.
    Bar-shalom, Y., Fortmann, T.E.: Tracking and Data Association. Academic Press, London (1989)Google Scholar
  9. 9.
    Barniv, Y.: Dynamic Programming Solution for Detecting Dim Moving Targets. IEEE Transactions on Aerospace and Electronic Systems 21, 144–156 (1985)CrossRefGoogle Scholar
  10. 10.
    Blostein, S., Huang, T.: Detecting small, moving objects in image sequences using sequential hypothesis testing. IEEE Transactions on Signal Processing 39, 1611–1629 (1991)CrossRefGoogle Scholar
  11. 11.
    Zaveri, M.A., Malewar, A., Merchant, S.N., Desai, U.B.: Wavelet Based Detection and Modified Pipeline Algorithm for Multiple Point Targets Tracking in InfraRed image sequences. In: Proceedings of 3rd Conference ICVGIP, Ahmedabad, India, pp. 67–72 (2002)Google Scholar
  12. 12.
    Zaveri, M.A., Desai, U.B., Merchant, S.N.: Tracking multiple maneuvering point targets using multiple filter bank in infrared image sequence. In: Proc. IEEE International Conference on Acoustics, Speech, & Signal Processing, Hongkong, pp. 409–412 (2003)Google Scholar
  13. 13.
    Desai, U.B., Merchant, S.N., Zaveri, M.A.: Detection and Tracking of Point Targets. In: Proceedings of the 5th International Conference on Advances in Pattern Recognition (ICAPR 2003), Calcutta, India (2003) (Invited Paper to appear)Google Scholar
  14. 14.
    Ajishna G.: Target detection in ir sequences. Master’s thesis, Indian Institute of Technology Bombay (June 2005)Google Scholar
  15. 15.
    Cloutier, J.R., Lin, C.-F., Yang, C.: Enhanced Variable Dimension Filter for Maneuvering Target Tracking. IEEE Transactions on Aerospace and Electronic Systems 29, 786–797 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • U. B. Desai
    • 1
  • S. N. Merchant
    • 1
  • Mukesh Zaveri
    • 1
  • G. Ajishna
    • 1
  • Manoj Purohit
    • 1
  • H. S. Phanish
    • 1
  1. 1.SPANN Lab, Electrical Engineering Dept.IITBombay

Personalised recommendations