Multi-aspect Data Analysis in Brain Informatics

  • Ning Zhong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3776)


In order to investigate human information processing mechanism systematically, various methods of brain data measurement and analysis are required. It has been observed that multiple brain data such as fMRI brain images and EEG brain waves extracted from human multi-perception mechanism involved in a particular task are peculiar ones with respect to a specific state or the related part of a stimulus. Based on this point of view, we propose a way of peculiarity oriented mining for multi-aspect analysis in multiple human brain data, without using conventional image processing to fMRI brain images and frequency analysis to brain waves. The proposed approach provides a new way in Brain Informatics for automatic analysis and understanding of human brain data to replace human-expert centric visualization. We attempt to change the perspective of cognitive scientists from a single type of experimental data analysis towards a holistic view.


Brodmann Area Brain Wave Experimental Data Analysis fMRI Image Brain Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Banquet, J.P.: Spectral Analysis of the EEG in Meditation. Electroencephalography and Clinical Neurophysiology 35, 143–151 (1973)CrossRefGoogle Scholar
  2. 2.
    Banfield, J., Raftery, A.: Model-based Gaussian and Non-Gaussian Clustering. Biometrics 49, 803–821 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Consularo, L.A., Lotufo, R.A., Costa, L.F.: Data Mining Based Modeling of Human Visual Perception. In: Cios, K.J. (ed.) Medical Data Mining and Knowledge Discovery, pp. 403–431. Physica-Verlag, Heidelberg (2001)Google Scholar
  4. 4.
    Cerutti, S., Chiarenza, G., Liberati, D., Mascellani, P., Pavesi, G.: A Parametric Method of Identification of Single Trial Event-related Potentials in the Brain. IEEE Trans. Biomed. Eng. 35(9), 701–711 (1988)CrossRefGoogle Scholar
  5. 5.
    Hornero, R., Martin-Fernandez, M., Alonso, A., Izquierdo, A., Lopez, M.: A DSP Implementation of Wavelet Transform to Detect Epileptiform Activity in the EEG. In: Proc. 8th Annual International Conference on Signal Processing Applications and Technology, ICAPAT 1997, pp. 692–696 (1997)Google Scholar
  6. 6.
    Liu, J.: Web Intelligence (WI): What Makes Wisdom Web? In: Proc. 18th International Joint Conference on Artificial Intelligence (IJCAI 2003), pp. 1596–1601 (2003)Google Scholar
  7. 7.
    Megalooikonomou, V., Herskovits, E.H.: Mining Structure-Function Associations in a Brain Image Database. In: Cios, K.J. (ed.) Medical Data Mining and Knowledge Discovery, pp. 153–179. Physica-Verlag, Heidelberg (2001)Google Scholar
  8. 8.
    Motomura, S., Zhong, N., Wu, J.L.: Brain Waves Data Mining for Human Multi-perception Activity Analysis. In: Proc. Inter. Workshop on Advanced Technologies for e-Learning and e-Science (ATELS 2004), pp. 65–72 (2004)Google Scholar
  9. 9.
    Mitchell, T.M., Hutchinson, R., Just, M., Niculescu, R.S., Pereira, F., Wang, X.: Classifying Instantaneous Cognitive States from fMRI Data. In: Proc. American Medical Informatics Association Annual Symposium, pp. 465–469 (2003)Google Scholar
  10. 10.
    Ohshima, M., Zhong, N., Yao, Y.Y., Murata, S.: Peculiarity Oriented Analysis in Multi-people Tracking Images. In: Dai, H., et al. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 508–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Sternberg, R.J., Lautrey, J., Lubart, T.I.: Models of Intelligence. American Psychological Association (2003)Google Scholar
  12. 12.
    Tsukimoto, H., Morita, C.: The Discovery of Rules from Brain Images. In: Arikawa, S., Motoda, H. (eds.) DS 1998. LNCS (LNAI), vol. 1532, pp. 198–209. Springer, Heidelberg (1998)Google Scholar
  13. 13.
    Zhong, N., Yao, Y.Y., Ohshima, M.: Peculiarity Oriented Multi-Database Mining. IEEE Transaction on Knowlegde and Data Engineering 15(4), 952–960 (2003)CrossRefGoogle Scholar
  14. 14.
    Zhong, N., Wu, J.L., Nakamaru, A., Ohshima, M., Mizuhara, H.: Peculiarity Oriented fMRI Brain Data Analysis for Studying Human Multi-Perception Mechanism. Cognitive Systems Research 5(3), 241–256 (2004)CrossRefGoogle Scholar
  15. 15.
    Zhong, N., Hu, J., Motomura, S., Wu, J.L., Liu, C.: Building a Data Mining Grid for Multiple Human Brain Data Analysis. Computational Intelligence 21(2), 177–196 (2005)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Zhong, N., Motomura, S., Wu, J.L.: Peculiarity Oriented Multi-Aspect Brain Data Analysis for Studying Human Multi-Perception Mechanism. In: Proc. SAINT 2005 Workshops (Workshop 8: Computer Intelligence for Exabyte Scale Data Explosion), pp. 306–309. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  17. 17.
    Zhong, N., Liu, J., Yao, Y.Y., Wu, J.: Web Intelligence (WI) Meets Brain Informatics (BI). In: Proc. CME 2005 (2005) (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ning Zhong
    • 1
  1. 1.The International WIC Institute & Department of Information EngineeringMaebashi Institute of TechnologyMaebashi-CityJapan

Personalised recommendations