Advertisement

Learning of General Cases

  • Silke Jänichen
  • Petra Perner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3776)

Abstract

Case-based object recognition requires a general case of the object that should be detected. Real world applications such as the recognition of biological objects in images cannot be solved by one general case. A case-base is necessary to handle the great natural variation in appearance of these objects. We present our conceptual clustering algorithm to learn a hierarchy of decreasingly generalized cases from a set of acquired structural cases. Due to its concept description, it explicitly supplies for each cluster a generalized case and a measure for the degree of its generalization. The resulting hierarchical case base is used for applications in the field of case-based object recognition.

Keywords

Case Mining Case-Based Object Recognition Cluster Analysis 

References

  1. 1.
    Perner, P.: Data Mining on Multimedia Data. Springer, Berlin (1998)Google Scholar
  2. 2.
    Mucha, H.J.: Clusteranalyse mit Mikrocomputern. Akademie Verlag, Berlin (1992)zbMATHGoogle Scholar
  3. 3.
    Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs (1988)zbMATHGoogle Scholar
  4. 4.
    Rasmussen, E.: Clustering Algorithms. In: Frakes, W.B., Baeza-Yates, R. (eds.) Information Retrieval, pp. 419–442. Prentice Hall, Englewood Cliffs (1992)Google Scholar
  5. 5.
    MacQueen, J.B.: Some Methods for classification and Analysis of Multivariate Observations. In: Proc. of 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297. University of California Press, Berkeley (1967)Google Scholar
  6. 6.
    Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence 1(2), 224–227 (1979)CrossRefGoogle Scholar
  7. 7.
    Fisher, D., Langley, P.: Approaches to conceptual clustering. In: Proc. of the 9th International Joint Conference on Artificial Intelligence, Los Angeles, pp. 691–697 (1985)Google Scholar
  8. 8.
    Perner, P.: Different Learning Strategies in a Case-Based Reasoning System for Image Interpretation. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI), vol. 1488, pp. 251–261. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Perner, P., Jänichen, S.: Case acquisition and case mining for case-based object recognition. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 616–629. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Silke Jänichen
    • 1
  • Petra Perner
    • 1
  1. 1.Institute of Computer Vision and applied Computer Sciences, IBaILeipzig

Personalised recommendations