Collaborative Rough Clustering

  • Sushmita Mitra
  • Haider Banka
  • Witold Pedrycz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3776)


A novel collaborative clustering is proposed through the use of rough sets. The Davies-Bouldin clustering validity index is extended to the rough framework, to generate the optimal number of clusters during collaboration.


Rough sets collaborative clustering cluster validity 


  1. 1.
    Mitra, S., Acharya, T.: Data Mining: Multimedia, Soft Computing, and Bioinformatics. John Wiley, New York (2003)Google Scholar
  2. 2.
    Pedrycz, W.: Collaborative fuzzy clustering. Pattern Recognition Letters 23, 1675–1686 (2002)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)zbMATHGoogle Scholar
  4. 4.
    Lingras, P., West, C.: Interval set clustering of Web users with rough k-means. Technical Report No. 2002-002, Dept. of Mathematics and Computer Science, St. Mary’s University, Halifax, Canada (2002)Google Scholar
  5. 5.
    Pawlak, Z.: Rough Sets, Theoretical Aspects of Reasoning about Data. Kluwer Academic, Dordrecht (1991)zbMATHGoogle Scholar
  6. 6.
    Tou, J.T., Gonzalez, R.C.: Pattern Recognition Principles. Addison-Wesley, London (1974)zbMATHGoogle Scholar
  7. 7.
    Bezdek, J.C., Pal, N.R.: Some new indexes for cluster validity. IEEE Transactions on Systems, Man, and Cybernetics, Part-B 28, 301–315 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Sushmita Mitra
    • 1
  • Haider Banka
    • 1
  • Witold Pedrycz
    • 2
  1. 1.Machine Intelligence UnitIndian Statistical InstituteKolkataIndia
  2. 2.Dept. of Electrical & Computer EnggUniversity of AlbertaEdmontonCanada

Personalised recommendations