A Rough Set-Based Magnetic Resonance Imaging Partial Volume Detection System

  • Sebastian Widz
  • Kenneth Revett
  • Dominik Śl̨ezak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3776)

Abstract

Segmentation of magnetic resonance imaging (MRI) data entails assigning tissue class labels to voxels. The primary source of segmentation error is the partial volume effect (PVE) which occurs most often with low resolution imaging – With large voxels, the probability of a voxel containing multiple tissue classes increases. Although the PVE problem has not been solved, the first stage entails correctly identifying PVE voxels. We employ rough sets to identify them automatically.

Keywords

Cerebral Spinal Fluid Decision Class Partial Volume Correction Tissue Class Edge Attribute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aston, J.A.D., Cunningham, V.J., Asselin, M.-C., Hammers, A., Evans, A.C., Gunn, R.N.: Positron emission tomography partial volume correction: estimation and algorithms. J. Cereb Blood Flow Metab 22, 1019–1034 (2002)CrossRefGoogle Scholar
  2. 2.
    Atkins, M.S., Mackiewich, B.T.: Fully Automatic Segmentation of the Brain in MRI. IEEE Transcations on Medical Imaging 17(1) (1998)Google Scholar
  3. 3.
    Kamber, M., Shinghal, R., Collins, L.: Model-based 3D Segmentation of Multiple Sclerosis Lesions in Magnetic Resonance Brain Images. IEEE Trans Med Imaging 14(3), 442–453 (1995)CrossRefGoogle Scholar
  4. 4.
    Kaus, M., Warfield, S.K., Nabavi, A., Black, P.M., Jolesz, F.A., Kikinis, R.: Automated Segmentation of MRI of Brain Tumors. Radiology 218, 586–591 (2001)Google Scholar
  5. 5.
    Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: A tutorial. In: Pal, S.K., Skowron, A. (eds.) Rough Fuzzy Hybridization – A New Trend in Decision Making, pp. 3–98. Springer, Heidelberg (1999)Google Scholar
  6. 6.
    Kovacevic, N., Lobaugh, N.J., Bronskill, M.J., Levine, B., Feinstein, A., Black, S.E.: A Robust Extraction and Automatic Segmentation of Brain Images. NeuroImage 17, 1087–1100 (2002)CrossRefGoogle Scholar
  7. 7.
    Matsuda, H., Ohnishi, T., Asada, T., Li, Z., Kanetaka, H., Imabayashi, E., Tanaka, F., Nakano, S.: Correction for Partial-Volume Effects on Brain Perfusion SPECT in Healthy Men. J. Nucl. Med. 44, 1243–1252 (2003)Google Scholar
  8. 8.
    Pawlak, Z.: Rough sets – Theoretical aspects of reasoning about data. Kluwer Academic Publishers, Dordrecht (1991)MATHGoogle Scholar
  9. 9.
    Pham, D.L., Prince, J.L.: Unsupervised partial volume estimation in single-channel imaging data. In: Proc. MMBIA 2000, Hilton Head Island, SC (2000)Google Scholar
  10. 10.
    Ślęzak, D., Wróblewski, J.: Order-based genetic algorithms for the search of approximate entropy reducts. In: Proc. RSFDGrC 2003, Chongqing, China (2003)Google Scholar
  11. 11.
    Ślęzak, D., Ziarko, W.: Attribute Reduction in Bayesian Version of Variable Precision Rough Set Model. In: Proc. of RSKD 2003, vol. 82(4), Elsevier, Amsterdam (2003)Google Scholar
  12. 12.
    Ślęzak, D., Ziarko, W.: The Investigation of the Bayesian Rough Set Model. International Journal of Approximate Reasoning (2005)Google Scholar
  13. 13.
    Van Leemput, K., Maes, F., Vandermeulen, D., Colchester, A., Suetens, P.: Automated model-based tissue classification of MR images on the brain. IEEE Trans Med. Imag. 18, 897–908 (1999)CrossRefGoogle Scholar
  14. 14.
    Widz, S., Revett, K.R., Ślęzak, D.: A hybrid approach to MR imaging segmentation using unsupervised clustering and approximate reducts. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W.P., Hu, X. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3642, pp. 372–382. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Widz, S., Revett, K.R., Ślęzak, D.: An Automated Multi-spectral MRI Segmentation Algorithm Using Approximate Reducts. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 815–824. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Wróblewski, J.: Theoretical Foundations of Order-Based Genetic Algorithms. Fundamenta Informaticae 28(3-4), 423–430 (1996)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Sebastian Widz
    • 1
    • 2
  • Kenneth Revett
    • 3
  • Dominik Śl̨ezak
    • 2
    • 4
  1. 1.Deforma Sebastian WidzWarsawPoland
  2. 2.Polish-Japanese Institute of Information TechnologyWarsawPoland
  3. 3.Harrow School of Computer ScienceUniversity of WestminsterLondonUK
  4. 4.Department of Computer ScienceUniversity of ReginaReginaCanada

Personalised recommendations