Skip to main content

Motion Trajectory Clustering for Video Retrieval Using Spatio-temporal Approximations

  • Conference paper
Visual Information and Information Systems (VISUAL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3736))

Included in the following conference series:

Abstract

A new technique is proposed for clustering and similarity retrieval of video motion clips based on spatio-temporal object trajectories. The trajectories are treated as motion time series and modelled using orthogonal basis polynomial approximations. Trajectory clustering is then carried out to discover patterns of similar object motion behaviour. The coefficients of the basis functions are used as input feature vectors to a Self-Organising Map which can learn similarities between object trajectories in an unsupervised manner. Clustering in the basis coefficient space leads to efficiency gains over existing approaches that encode trajectories as point-based flow vectors. Experiments on pedestrian motion data gathered from video surveillance demonstrate the effectiveness of our approach. Applications to motion data mining in video surveillance databases are envisaged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chang, S.-F., Chen, W., Meng, H.J., Sundaram, H., Zhong, D.: “A fully automated content-based video search engine supporting spatiotemporal queries. IEEE Trans. Circuits Syst. Video Technol. 8(5), 602–615 (1998)

    Article  Google Scholar 

  2. Jeannin, S., Divakaran, A.: MPEG-7 visual motion descriptors. IEEE Trans. Circuits Syst. Video Technol. 11(6), 720–724 (2001)

    Article  Google Scholar 

  3. Dagtas, S., Ali-Khatib, W., Ghafor, A., Kashyap, R.L.: Models for motion-based video indexing and retrieval. IEEE Trans. Image Proc. 9(1), 88–101 (2000)

    Article  Google Scholar 

  4. Aghbari, Z., Kaneko, K., Makinouchi, A.: Content-trajectory approach for searching video databases. IEEE Trans. Multimedia 5(4), 516–531 (2003)

    Article  Google Scholar 

  5. Bashir, F., Khokhar, A., Schonfeld, D.: Segmented trajectory-based indexing and retrieval of video data. In: Proc. IEEE Int. Conf. Image Processing, Spain, pp. 623–626 (2003)

    Google Scholar 

  6. Hsu, C.-T., Teng, S.-J.: Motion trajectory based video indexing and retrieval. Proc. IEEE Int. Conf. Image Processing 1, 605–608 (2002)

    Google Scholar 

  7. Bashir, F., Khokhar, A., Schonfeld, D.: A hybrid system for affine-invariant trajectory retrieval. In: Proc. MIR 2004, pp. 235–242 (2004)

    Google Scholar 

  8. Shim, C., Chang, J.: Content-based retrieval using trajectories of moving objects in video databases. In: Proc. IEEE. 7th Int. Conf. Database Systems for Advanced Applications, pp. 169–170 (2001)

    Google Scholar 

  9. Shim, C., Chang, J.: Trajectory-based video retrieval for multimedia information systems. In: Yakhno, T. (ed.) ADVIS 2004. LNCS, vol. 3261, pp. 372–382. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Jin, Y., Mokhtarian, F.: Efficient video retrieval by motion trajectory. In: Proc. BMVC 2004 (2004)

    Google Scholar 

  11. Khalid, S., Naftel, A.: Evaluation of matching metrics for trajectory-based indexing and retrieval of video clips. In: Proc. IEEE WACV, Colorado, USA (January 2004)

    Google Scholar 

  12. Wang, L., Hu, W., Tan, T.: Recent developments in human motion analysis. Pattern Recognition 36(3), 585–601 (2003)

    Article  Google Scholar 

  13. Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. IEEE Trans. Systems, Man & Cybernetic, Part C 34(3), 334–352 (2004)

    Article  Google Scholar 

  14. Johnson, N., Hogg, D.: Learning the distribution of object trajectories for event recognition. Image Vis. Comput. 14(8), 609–615 (1996)

    Article  Google Scholar 

  15. Owens, J., Hunter, A.: Application of the self-organising map to trajectory classification. In: Proc. IEEE Int. Workshop Visual Surveillance, pp. 77–83 (2000)

    Google Scholar 

  16. Hu, W., Xiao, X., Xie, D., Tan, T., Maybank, S.: Traffic accident prediction using 3-D model-based vehicle tracking. IEEE Trans. Vehicular Tech. 53(3), 677–694 (2004)

    Article  Google Scholar 

  17. Alon, J., Sclaroff, S., Kollios, G., Pavlovic, V.: Discovering clusters in motion time-series data. In: Proc. IEEE CVPR (June 2004)

    Google Scholar 

  18. Hu, W., Xie, D., Tan, T., Maybank, S.: Learning activity patterns using fuzzy self-organizing neural networks. IEEE Trans. Systems, Man & Cybernetic, Pt. B 34(3), 1618–1626 (2004)

    Article  Google Scholar 

  19. Faloutsas, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in time-series databases. In: Proc. ACM SIGMOD Conf., pp. 419–429 (1994)

    Google Scholar 

  20. Chan, K., Fu, A.: Efficient time series matching by wavelets. In: Proc. Int. Conf. Data Engineering, Sydney, March 1999, pp. 126–133 (1999)

    Google Scholar 

  21. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrota, S.: Locally adaptive dimensionality reduction for indexing large time series databases. In: Proc. ACM SIGMOD Conf., pp. 151–162 (2001)

    Google Scholar 

  22. Cui, Y., Ng, R.: Indexing spatio-temporal trajectories with Chebyshev polynomials. In: Proc. ACM SIGMOD Conf., Paris, June 2004, pp. 599–610 (2004)

    Google Scholar 

  23. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  24. Kohonen, T.: Self-Organizing Maps, 2nd edn., vol. 30. Springer, New York (1997)

    MATH  Google Scholar 

  25. Melo, J., Naftel, A., Bernardino, A., Santos-Victor, J.: Viewpoint independent detection of vehicle trajectories and lane geometry from uncalibrated traffic surveilllance cameras. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 454–462. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  26. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Khalid, S., Naftel, A. (2006). Motion Trajectory Clustering for Video Retrieval Using Spatio-temporal Approximations. In: Bres, S., Laurini, R. (eds) Visual Information and Information Systems. VISUAL 2005. Lecture Notes in Computer Science, vol 3736. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11590064_6

Download citation

  • DOI: https://doi.org/10.1007/11590064_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30488-3

  • Online ISBN: 978-3-540-32339-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics