Skip to main content

Towards Faster Linear-Sized Nets for Axis-Aligned Boxes in the Plane

  • Conference paper
Discrete and Computational Geometry (JCDCG 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3742))

Included in the following conference series:

  • 895 Accesses

Abstract

Let \({\mathcal B}\) be any set of n axis-aligned boxes in \({\mathbb R}^{d}\), d≥ 1. We call a subset \({\mathcal N} \subseteq {\mathcal B}\) a (1/c )-net for \({\mathcal B}\) if any p\({\mathbb R}^{d}\) contained in more than n/c boxes of \({\mathcal B}\) must be contained in a box of \({\mathcal N}\), or equivalently if a point not contained in any box in \({\mathcal N}\) can only stab at most n/c boxes of \({\mathcal B}\). General VC-dimension theory guarantees the existence of (1/c)-nets of size O(clog c) for any fixed d, the constant in the big-Oh depending on d, and Matoušek [8, 9] showed how to compute such a net in time O(nc O(1)), or even O(n log c + c O(1)) which is O(n log c) if c is small enough. In this paper, we conjecture that axis-aligned boxes in \({\mathbb R}^{2}\) admit (1/c)-nets of size O(c), and that we can even compute such a net in time O(n log c), for any c between 1 and n. We show this to be true for intervals on the real line, and for various special cases (quadrants and skylines, which are unbounded in two and one directions respectively). In a follow-up version, we also show this to be true with various fatness We also investigate generalizations to higher dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  2. Clarkson, K., Varadarajan, K.: Improved Approximation Algorithms for Geometric Set Cover. To appear Proceedings of the Twenty First Annual Symposium on Computational Geometry, Pisa, Italy (2005)

    Google Scholar 

  3. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2002)

    Google Scholar 

  4. Ezra, E., Sharir, M.: Output-sensitive construction of the union of triangles. In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 420–429 (2004)

    Google Scholar 

  5. Komlòs, J., Pach, J., Woeginger, G.J.: Almost Tight Bounds for epsilon-Nets. Discrete & Computational Geometry 7, 163–173 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Matoušek, J.: Lectures on Discrete Geometry. Springer, Berlin (2002)

    MATH  Google Scholar 

  7. Matoušek, J., Seidel, R., Welzl, E.: How to net a lot with little: small ε-nets for disks and halfspaces. In: Proceedings of the Sixth Annual Symposium on Computational Geometry, Berkeley, California, June 7-9, pp. 16–22 (1990)

    Google Scholar 

  8. Matoušek, J.: Approximations and optimal geometric divide-and-conquer. J. Comput. Syst. Sci. 50(2), 203–208 (1995)

    Article  Google Scholar 

  9. Matoušek, J.: Efficient partition trees. Discrete & Computational Geometry 8, 315–334 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Nielsen, F.: Fast Stabbing of Boxes in High Dimensions. Theoretical Computer Science 246(1-2) (2000)

    Google Scholar 

  11. Katz, M.J., Nielsen, F., Segal, M.: Maintenance of a Piercing Set for Intervals with Applications. Algorithmica 36(1), 59–73 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Pach, J., Agarwal, P.K.: Combinatorial Geometry. J. Wiley, New York (1995)

    MATH  Google Scholar 

  13. Preparata, F., Shamos, M.I.: Computational Geometry. Springer, Heidelberg (1985)

    Google Scholar 

  14. Sauer, N.: On the density of families of sets. J. Combinatorial Theory, Ser. A 13, 145–147 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  15. Shelah, S.: A combinatorial problem; stability and order for models and theories in infinitary languages. Pacific J. Math. 41, 247–261 (1972)

    MATH  MathSciNet  Google Scholar 

  16. Vapnik, V., Červonenkis, A.Y.: On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. 16, 264–280 (1971)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brönnimann, H. (2005). Towards Faster Linear-Sized Nets for Axis-Aligned Boxes in the Plane. In: Akiyama, J., Kano, M., Tan, X. (eds) Discrete and Computational Geometry. JCDCG 2004. Lecture Notes in Computer Science, vol 3742. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11589440_6

Download citation

  • DOI: https://doi.org/10.1007/11589440_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30467-8

  • Online ISBN: 978-3-540-32089-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics