Skip to main content

Wedges in Euclidean Arrangements

  • Conference paper
  • 885 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3742))

Abstract

Given an arrangement of n not all coincident lines in the Euclidean plane we show that there can be no more than \(\lfloor 4n/3\rfloor\) wedges (i.e. two-edged faces) and give explicit examples to show that this bound is tight. We describe the connection this problem has to the problem of obtaining lower bounds on the number of ordinary points in arrangements of not all coincident, not all parallel lines, and show that there must be at least \(\lfloor(5{\it n} + 6)/39\rfloor\) such points.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borwein, P., Moser, W.: A survey of Sylvester’s problem and its generalizations. Aequationes Mathematicae 40, 111–135 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ching, Y.T., Lee, D.T.: Finding the diameter of a set of lines. Pattern Recognition 18, 249–255 (1985)

    Article  MathSciNet  Google Scholar 

  3. Csima, J., Sawyer, E.: There exist 6n/13 ordinary points. Discrete and Computational Geometry 9, 187–202 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Devillers, O., Mukhopadhyay, A.: Finding an ordinary conic and an ordinary hyperplane. Nordic Journal of Computing 6, 462–468 (1999)

    MATH  MathSciNet  Google Scholar 

  5. Devroye, L., Toussaint, G.: Convex hulls for random lines. Journal of Algorithms 14, 381–394 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Felsner, S.: Geometric Graphs and Arrangements. Vieweg and Sohn, Wiesbaden, Germany (2004)

    MATH  Google Scholar 

  7. Golin, M., Langerman, S., Steiger, W.: The convex hull for random lines in the plane. In: Akiyama, J., Kano, M. (eds.) JCDCG 2002. LNCS, vol. 2866, pp. 172–175. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Keil, M.: A simple algorithm for determining the envelope of a set of lines. Information Processing Letters 39, 121–124 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kelly, L., Moser, W.: On the number of ordinary lines determined by n points. Canadian Journal of Mathematics 10, 210–219 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lenchner, J.: On the dual and sharpened dual of Sylvester’s theorem in the plane. IBM Research Report, RC23411, W0409-066 (2004)

    Google Scholar 

  11. Melchior, E.: Über vielseite der projektiven eberne. Deutsche Math. 5, 461–475 (1940)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lenchner, J. (2005). Wedges in Euclidean Arrangements. In: Akiyama, J., Kano, M., Tan, X. (eds) Discrete and Computational Geometry. JCDCG 2004. Lecture Notes in Computer Science, vol 3742. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11589440_14

Download citation

  • DOI: https://doi.org/10.1007/11589440_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30467-8

  • Online ISBN: 978-3-540-32089-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics