Security Proof of Sakai-Kasahara’s Identity-Based Encryption Scheme

  • Liqun Chen
  • Zhaohui Cheng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3796)

Abstract

Identity-based encryption (IBE) is a special asymmetric encryption method where a public encryption key can be an arbitrary identifier and the corresponding private decryption key is created by binding the identifier with a system’s master secret. In 2003 Sakai and Kasahara proposed a new IBE scheme, which has the potential to improve performance. However, to our best knowledge, the security of their scheme has not been properly investigated. This work is intended to build confidence in the security of the Sakai-Kasahara IBE scheme. In this paper, we first present an efficient IBE scheme that employs a simple version of the Sakai-Kasahara scheme and the Fujisaki-Okamoto transformation, which we refer to as SK-IBE. We then prove that SK-IBE has chosen ciphertext security in the random oracle model based on a reasonably well-explored hardness assumption.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Boyen, X.: Secure identity-based encryption without random oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Boneh, D., Franklin, M.: Identity based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of the First Annual Conference on Computer and Communications Security. ACM, New York (1993)Google Scholar
  7. 7.
    Boyen, X.: Multipurpose identity-based signcryption: a swiss army knife for identity-based cryptography. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 382–398. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004); See also Cryptology ePrint Archive, Report 2003/182Google Scholar
  10. 10.
    Cha, J.C., Cheon, J.H.: An identity-based signature from gap Diffie-Hellman groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer, Heidelberg (2002); See also Cryptology ePrint Archive, Report 2002/018Google Scholar
  11. 11.
    Chen, L., Cheng, Z.: Security proof of Sakai-Kasahara’s identity-based encryption scheme. Cryptology ePrint Archive, Report 2005/226Google Scholar
  12. 12.
    Chen, L., Kudla, C.: Identity-based authenticated key agreement from pairings. In: Proceedings of the 16th IEEE Computer Security Foundations Workshop, pp. 219–233. IEEE, Los Alamitos (2003); See also Cryptology ePrint Archive, Report 2002/184Google Scholar
  13. 13.
    Chen, L., Malone-Lee, J.: Improved identity-based signcryption. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 362–379. Springer, Heidelberg (2005); See also Cryptology ePrint Archive, Report 2004/114Google Scholar
  14. 14.
    Cheng, Z., Chen, L.: On security proof of McCullagh-Barreto’s key agreement protocol and its variants. Cryptology ePrint Archive, Report 2005/201Google Scholar
  15. 15.
    Cheng, Z., Nistazakis, M., Comley, R., Vasiu, L.: On the indistinguishability-based security model of key agreement protocols-simple cases. In: Proceedings of ACNS 2004, Full version available on Cryptology ePrint Archive, Report 2005/129Google Scholar
  16. 16.
    Cocks, C.: An identity-based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 535–554. Springer, Heidelberg (1999)Google Scholar
  18. 18.
    Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption at minimum cost. IEICE Trans. Fundamentals E83-9(1), 24–32 (2000)Google Scholar
  19. 19.
    Galindo, D.: Boneh-Franklin identity based encryption revisited. In: Proceedings of the 32nd International Colloquium on Automata, Languages and Programming, ICALP 2005; Also available on Cryptology ePrint Archive, Report 2005/117 (2005)Google Scholar
  20. 20.
    Galindo, D., Hasuo, I.: Security Notions for Identity Based Encryption (2005) (Manuscript)Google Scholar
  21. 21.
    Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308 (1988)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Hess, F.: Efficient identity based signature schemes based on pairings. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    ISO/IEC 11770-3:1999. Information technology - Security techniques - Key management - Part 3: Mechanisms using asymmetric techniquesGoogle Scholar
  24. 24.
    ISO/IEC 14888-2:1998. Information technology - Security techniques - Digital signatures with appendix - Part 2: Identity-based mechanismsGoogle Scholar
  25. 25.
    ISO/IEC 2nd FCD 18033-2:2004-12-06. Information technology - Security techniques - Encryption algorithms - Part 2: Asymmetric ciphersGoogle Scholar
  26. 26.
    McCullagh, N., Barreto, P.S.L.M.: Efficient and forward-secure identity-based signcryption. Available on Cryptology ePrint Archive, Report 2004/117Google Scholar
  27. 27.
    McCullagh, N., Barreto, P.S.L.M.: A new two-party identity-based authenticated key agreement. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 262–274. Springer, Heidelberg (2005); See also Cryptology ePrint Archive, Report 2004/122Google Scholar
  28. 28.
    Mitsunari, S., Sakai, R., Kasahara, M.: A new traitor tracing. IEICE Trans. Fundamentals E85-A(2), 481–484 (2002)Google Scholar
  29. 29.
    Sakai, R., Kasahara, M.: ID based cryptosystems with pairing on elliptic curve. Cryptology ePrint Archive, Report 2003/054Google Scholar
  30. 30.
    Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: The 2000 Symposium on Cryptography and Information Security, Okinawa, Japan (January 2000)Google Scholar
  31. 31.
    Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing over elliptic curve (in Japanese). In: The 2001 Symposium on Cryptography and Information Security, Oiso, Japan (January 2001)Google Scholar
  32. 32.
    Scott, M.: Computing the Tate pairing. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 293–304. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  33. 33.
    Scott, M., Barreto, P.S.L.M.: Compressed pairings. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 140–156. Springer, Heidelberg (2004); See also Cryptology ePrint Archive, Report 2004/032Google Scholar
  34. 34.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  35. 35.
    Silverman, J.: The arithmetic of elliptic curve. Springer, Heidelberg (1986)Google Scholar
  36. 36.
    Smart, N.P.: An identity based authenticated key agreement protocol based on the Weil pairing. Electronics Letters 38(13), 630–632 (2002); See also Cryptology ePrint Archive, Report 2001/111Google Scholar
  37. 37.
    Smart, N., Vercauteren, F.: On computable isomorphisms in efficient pairing based systems, Cryptology ePrint Archive, Report 2005/116Google Scholar
  38. 38.
    Tô, V.D., Safavi-Naini, R., Zhang, F.: New traitor tracing schemes using bilinear map. In: Proceedings of 2003 DRM Workshop (2003)Google Scholar
  39. 39.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005); See also Cryptology ePrint Archive, Report 2004/180Google Scholar
  40. 40.
    Wei, V.: Tight Reductions among Strong Diffie-Hellman Assumptions, Cryptology ePrint Archive, Report 2005/057Google Scholar
  41. 41.
    Zhang, F., Safavi-Naini, R., Susilo, W.: An efficient signature scheme from bilinear pairings and its applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Liqun Chen
    • 1
  • Zhaohui Cheng
    • 2
  1. 1.Hewlett-Packard LaboratoriesBristolUK
  2. 2.School of Computing ScienceMiddlesex UniversityLondonUK

Personalised recommendations