Skip to main content

Using Boolean Differences for Discovering Ill-Defined Attributes in Propositional Machine Learning

  • Conference paper
MICAI 2005: Advances in Artificial Intelligence (MICAI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3789))

Included in the following conference series:

Abstract

The accuracy of the rules produced by a concept learning system can be hindered by the presence of errors in the data. Although these errors are most commonly attributed to random noise, there also exist “ill-defined” attributes that are too general or too specific that can produce systematic classification errors. We present a computer program called Newton which uses the fact that ill-defined attributes create an ordered error pattern among the instances to compute hypotheses explaining the classification errors of a concept in terms of too general or too specific attributes. Extensive empirical testing shows that Newton identifies such attributes with a prediction rate over 95%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Quinlan, J.R.: The effect of noise on concept learning. In: Michalski, R.S., Carbonell, J.G., Mitchell, T.M. (eds.) Machine Learning: An artificial intelligence approach, vol. 2. Morgan Kaufmann, San Francisco (1986)

    Google Scholar 

  2. Thayse, A.: Boolean calculus of differences. In: Shavlik, J.W., Dietterich, T.G. (eds.) Boolean Calculus of Differences. LNCS, vol. 101. Springer, Heidelberg (1981)

    Google Scholar 

  3. Mooney, R., Ourston, D.: Theory refinement with noisy data. Technical Report AI 91153, Artificial Intelligence Lab, University of Texas at Austin (1991)

    Google Scholar 

  4. Quinlan, J.R.: Induction of decision trees. In: Shavlik, J.W., Dietterich, T.G. (eds.) Readings in Machine Learning, Morgan Kaufmann, San Francisco (1990); Originally published in Machine Learning 1, 81–106 (1986)

    Google Scholar 

  5. Kearns, M.J., Li, M.: Learning in the presence of malicious errors (extended abstract). In: STOC, pp. 267–280 (1988)

    Google Scholar 

  6. Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning 40(2), 139–157 (2000)

    Article  Google Scholar 

  7. Kalapanidas, E., Avouris, N., Cracium, M., Neagu, D.: Machine learning algorithms: a study on noise sensivity. In: Manolopoulos, Y., Spirakis, P. (eds.) BCI 2003, pp. 356–365 (2003)

    Google Scholar 

  8. Brazdil, P., Clark, P.: Learning from imperfect data. In: Brazdil, P., Konolige, K. (eds.) Machine Learning, Meta-Reasoning and Logics, pp. 207–232. Kluwer, Boston (1990)

    Google Scholar 

  9. Weiss, G.M.: Learning with rare cases and small disjuncts. In: International Conference on Machine Learning, pp. 558–565 (1995)

    Google Scholar 

  10. Provost, F.J., Danyluk, A.P.: Learning from bad data. In: ML 1995 Workshop on Applying Machine Learning in Practice (1995)

    Google Scholar 

  11. Mingers, J.: An empirical comparison of pruning methods for decision tree induction. Machine Learning 4, 227–243 (1989)

    Article  Google Scholar 

  12. Hennessy, J.L., Patterson, D.A.: Computer Organization and Design: The Hardware/Software Interface. Morgan Kaufmann, San Francisco (2004)

    Google Scholar 

  13. Bay, S.D., Pazzani, M.J.: Characterizing model errors and differences. In: Langley, P. (ed.) ICML, pp. 49–56. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  14. Liu, B., Hsu, W., Ma, Y.: Discovering the set of fundamental rule changes. In: Knowledge Discovery and Data Mining, pp. 335–340 (2001)

    Google Scholar 

  15. Wang, K., Zhou, S., Fu, A.W.C., Yu, J.X.: Mining changes of classification by correspondence tracing. In: Barbará, D., Kamath, C. (eds.) SDM, SIAM (2003)

    Google Scholar 

  16. Kukar, M., Kononenko, I.: Reliable classifications with machine learning. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, pp. 219–231. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hallé, S. (2005). Using Boolean Differences for Discovering Ill-Defined Attributes in Propositional Machine Learning. In: Gelbukh, A., de Albornoz, Á., Terashima-Marín, H. (eds) MICAI 2005: Advances in Artificial Intelligence. MICAI 2005. Lecture Notes in Computer Science(), vol 3789. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11579427_43

Download citation

  • DOI: https://doi.org/10.1007/11579427_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29896-0

  • Online ISBN: 978-3-540-31653-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics