Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

Iberoamerican Congress on Pattern Recognition

CIARP 2005: Progress in Pattern Recognition, Image Analysis and Applications pp 933–944Cite as

  1. Home
  2. Progress in Pattern Recognition, Image Analysis and Applications
  3. Conference paper
Adapted Wavelets for Pattern Detection

Adapted Wavelets for Pattern Detection

  • Hector Mesa18,19 
  • Conference paper
  • 1268 Accesses

  • 11 Citations

Part of the Lecture Notes in Computer Science book series (LNIP,volume 3773)

Abstract

Wavelets are widely used in numerous applied fields involving for example signal analysis, image compression or function approximation. The idea of adapting wavelet to specific problems, it means to create and use problem and data dependent wavelets, has been developed for various purposes. In this paper, we are interested in to define, starting from a given pattern, an efficient design of FIR adapted wavelets based on the lifting scheme. We apply the constructed wavelet for pattern detection in the 1D case. To do so, we propose a three stages detection procedure which is finally illustrated by spike detection in EEG.

Keywords

  • Discrete Wavelet Transform
  • Continuous Wavelet Transform
  • Pattern Detection
  • Lift Scheme
  • Biorthogonal Wavelet

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Chapter PDF

Download to read the full chapter text

References

  1. Zhang, J.K., Davidson, T.N., Wong, K.M.: Efficient design of orthonormal wavelet bases for signal representation. IEEE Transactions on Signal Processing 52, 1983–1996 (2004)

    CrossRef  MathSciNet  Google Scholar 

  2. Lucas, M.F., Hitti, E., Doncarli, C.: Optimisation d’ondelettes pour la classification. 18ième colloque GRETSI sur le traitement du Signal et des Images, Toulouse, France (2001)

    Google Scholar 

  3. Du, M., Chan, F.H.Y., Lam, F.K., Sun, J.: Crackle detection and classification based on matched wavelet analysis. In: Engineering in Medicine and Biology Society, Chicago, IL, USA. 19th Annual International Conference of the IEEE, vol. 4, pp. 1638–1641 (1997)

    Google Scholar 

  4. Brunelli, R., Poggio, T.: Template matching: Matched spatial filters and beyond. Pattern Recognition 30, 751–768 (1997)

    CrossRef  Google Scholar 

  5. Ozdamar, O., Kalayci, T.: Detection of spikes with artificial neural networks using raw EEG. Computers and Biomedical Research 31, 122–142 (1998)

    CrossRef  Google Scholar 

  6. Kalayci, T., Ozdamar, O.: Wavelet processing for automated neural network detection of EEG spikes. IEEE Med. Engng. Biol. 14, 160–166 (1995)

    CrossRef  Google Scholar 

  7. Mallat, S.: A wavelet tour of signal processing. Academic Press, London (1998)

    MATH  Google Scholar 

  8. Misiti, M., Misiti, Y., Oppenheim, G., Poggi, J.M.: Les ondelettes et leurs applications. Hermes (2003)

    Google Scholar 

  9. Chapa, J.O., Rao, R.M.: Algorithms for designing wavelets to match a specified signal. IEEE Transactions on Signal Processing 48, 3395–3406 (2000)

    CrossRef  MATH  MathSciNet  Google Scholar 

  10. Fung, C.C., Shi, P.: Design of compactly supported wavelet to match singularities in medical images. Applications of Digital Image Processing XXV, 358–369 (2002)

    Google Scholar 

  11. Abry, P.: Ondelettes et turbulences. Diderot Editeur, Paris (1997)

    MATH  Google Scholar 

  12. Aldroubi, A., Unser, M.: Families of multiresolution and wavelet spaces with optimal properties. Numer. Funct. Anal. and Optimiz. 14, 417–446 (1993)

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Abry, P., Aldroubi, A.: Designing multiresolution analysis-type wavelets and their fast alghorithm. The journal of Fourier Analysis and Applications 2, 135–159 (1995)

    CrossRef  MATH  MathSciNet  Google Scholar 

  14. Sweldens, W.: The lifting scheme: A new philosophy in biorthogonal wavelet constructions. In: Laine, A., Unser, M. (eds.) Wavelet Applications in Signal and Image Processing III, Proc. SPIE, vol. 2569, pp. 68–79 (1995)

    Google Scholar 

  15. Sweldens, W.: The lifting scheme: A custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal. 3, 186–200 (1996)

    CrossRef  MATH  MathSciNet  Google Scholar 

  16. Sweldens, W.: The lifting scheme: A construction of second generation wavelets. SIAM J. Math. Anal. 29, 511–546 (1997)

    CrossRef  MathSciNet  Google Scholar 

  17. Sweldens, W., Daubechies, I.: Factoring wavelets transform into lifting steps. J. Fourier Anal. Appl. 4, 247–269 (1998)

    CrossRef  MATH  MathSciNet  Google Scholar 

  18. Strang, G., Nguyen, T.: Wavelets and Filters Banks. Wellesley-Cambridge Press (1996)

    Google Scholar 

  19. Daubechies, I.: Ten Lectures on Wavelets. 3rd. edn. CBMS-NSF (1994)

    Google Scholar 

  20. Wilson, S.B., Emerson, R.: Spike detection: a review and comparison of algorithms. Clinical Neurophysiology 113, 1873–1881 (2002)

    CrossRef  Google Scholar 

  21. Varsta, M., Heikkonen, J., Millan, J.R.: Epileptic activity detection in EEG with neural networks. Research Reports B3, Laboratory of Computational Engineering, Helsinki University of Technology (1998)

    Google Scholar 

  22. Gloor, P.: Contributions of electroencephalography and electrocorticography in the neurosurgical treatment of the epilepsies. Adv. Neurol. 8, 59–105 (1975)

    Google Scholar 

  23. Wilson, S.B., Turner, C.A., Emerson, R.G., Scheuer, M.L.: Spike detection. Clinical Neurophysiology 110, 404–411 (1999)

    CrossRef  Google Scholar 

  24. Scott, C., Nowak, R.: TEMPLAR: A wavelet based framework for pattern learning and analysis. IEEE Transactions on Signal Processing 52, 2264–2274 (2004)

    CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Faculty of Mathematics and Computer Sciences, University of La Habana, 10400, La Habana, Cuba

    Hector Mesa

  2. Paris-Sud XI University, 91400, Orsay, Paris, France

    Hector Mesa

Authors
  1. Hector Mesa
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Dept. System Engineering and Automation, Universitat Politècnica de Catalunya (UPC) Barcelona, Spain

    Alberto Sanfeliu

  2. Pattern Recognition Group, ICIMAF, Havana, Cuba

    Manuel Lazo Cortés

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mesa, H. (2005). Adapted Wavelets for Pattern Detection. In: Sanfeliu, A., Cortés, M.L. (eds) Progress in Pattern Recognition, Image Analysis and Applications. CIARP 2005. Lecture Notes in Computer Science, vol 3773. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11578079_96

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/11578079_96

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29850-2

  • Online ISBN: 978-3-540-32242-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

  • The International Association for Pattern Recognition

    Published in cooperation with

    http://www.iapr.org/

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature