Advertisement

Image Thresholding of Historical Documents Using Entropy and ROC Curves

  • Carlos A. B. Mello
  • Antonio H. M. Costa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3773)

Abstract

It is presented herein a new thresholding algorithm for images of historical documents. The algorithm provides high quality binary images using entropy information of the images to define a primary threshold value which is adjusted with the use of ROC curves.

Keywords

Receiver Operating Characteristic Curve Document Image Historical Document Sample Document Produce Different Classifier With Different 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Chang, M.S., Kang, S.M., Rho, W.S., Kim, H.G., Kim, D.J.: Improved binarization algorithm for document image by histogram and edge detection. In: Proc. 3rd Intern. Conf.on Document Analysis and Recognition, Canada, pp. 636–639 (1995)Google Scholar
  2. 2.
    Glasbye, C.A.: An Analysis of Histogram-Based Thresholding Algorithm. In: CVGIP: Graphical Models and Image Processing (November 1993)Google Scholar
  3. 3.
    Huang, L.K.,, L.: Image Thresholding by Minimizing the Measures of Fuzziness. Pattern Recognition (1995)Google Scholar
  4. 4.
    Jawahar, C.V., Biswas, P.K., Ray, K.: Investigations On Fuzzy Thresholding Based On Fuzzy Clustering. Pattern Recognition (1997)Google Scholar
  5. 5.
    Johannsen, G., Bille, J.: A Threshold Selection Method using Information Measures. In: Proceedings, 6th Int. Conf. Pattern Recognition, Munich, Germany, pp. 140–143 (1982)Google Scholar
  6. 6.
    Kapur, J.N., Sahoo, P.K., Wong, A.K.C.: A New Method for Gray-Level Picture Thresholding using the Entropy of the Histogram. Computer Vision, Graphics and Image Processing 29(3) (1985)Google Scholar
  7. 7.
    Kapur, J.N.: Measures of Information and their Applications. John Wiley and Sons, Chichester (1994)MATHGoogle Scholar
  8. 8.
    Katz, S.W., Brink, A.D.: Segmentation of Chromosome Images, pp. 85–90. IEEE, Los Alamitos (1993)Google Scholar
  9. 9.
    Kittler, J., Illingworth, J.: ‘Minimum Error Thresholding. Pattern Recognition 19(1), 41–47 (1986)CrossRefGoogle Scholar
  10. 10.
    Kullback, S.: Information Theory and Statistics. Dover Publications, Inc., New York (1997)MATHGoogle Scholar
  11. 11.
    Li, C.H., Lee, C.K.: Minimum Cross Entropy Thresholding. Pattern Recognition 26(4), 616–626 (1993)CrossRefGoogle Scholar
  12. 12.
    Mello, C.A.B.: A New Entropy and Logarithmic Based Binarization Algorithm for Grayscale Images. In: IASTED VIIP 2004, Hawaii, USA (2004)Google Scholar
  13. 13.
    McMilan, N.A., Creelman, C.D.: Detection Theory. LEA Pub. (2005)Google Scholar
  14. 14.
    Otsu, N.: A threshold selection method from gray-level histogram. IEEE Trans.on Systems, Man, and Cybernetics 8, 62–66 (1978)CrossRefGoogle Scholar
  15. 15.
    Parker, J.R.: Algorithms for Image Processing and Computer Vision. John Wiley and Sons, Chichester (1997)Google Scholar
  16. 16.
    Pun, T.: Entropic Thresholding, A New Approach. C.Graphics and Image Proc. (1981)Google Scholar
  17. 17.
    Ridler, T.W., Calvard, S.: Picture Thresholding Using an Iterative Selection Method. IEEE Trans. on Systems, Man and Cybernetics SMC-8(8), 630–632 (1978)CrossRefGoogle Scholar
  18. 18.
    Sahoo, P., Wilkins, C., Yeager, J.: Threshold Selection using Renyi’s Entropy. Pattern recognition 30(1), 71–84 (1997)MATHCrossRefGoogle Scholar
  19. 19.
    Shannon, C.: A Mathematical Theory of Communication. Bell System Technology Journal 27, 370–423, 623-656 (1948)MathSciNetGoogle Scholar
  20. 20.
    Wu, L., Ma, S., Lu, H.: An Effective Entropic thresholding for Ultrasonic Images, pp. 1552–1554. IEEE, Los Alamitos (1998)Google Scholar
  21. 21.
    Yager, R.R.: On the Measures of Fuzziness and Negation.Part.1: Membership in the Unit Interval. Int. Journal of Gen. Sys. (1979)Google Scholar
  22. 22.
    Yan, H.: Unified Formulation of a Class of Image Thresholding Techniques. Pattern Recognition 29(12), 2025–2032 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Carlos A. B. Mello
    • 1
  • Antonio H. M. Costa
    • 1
  1. 1.Department of Computing SystemsPolytechnic School of PernambucoMadalena, RecifeBrazil

Personalised recommendations