Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

Iberoamerican Congress on Pattern Recognition

CIARP 2005: Progress in Pattern Recognition, Image Analysis and Applications pp 804–812Cite as

  1. Home
  2. Progress in Pattern Recognition, Image Analysis and Applications
  3. Conference paper
Optimal Positioning of Sensors in 3D

Optimal Positioning of Sensors in 3D

  • Andrea Bottino18 &
  • Aldo Laurentini18 
  • Conference paper
  • 1093 Accesses

  • 3 Citations

Part of the Lecture Notes in Computer Science book series (LNIP,volume 3773)

Abstract

Locating the minimum number of sensors able to see at the same time the entire surface of an object is an important practical problem. Most work presented in this area is restricted to 2D objects. In this paper we present an optimal 3D sensor location algorithms that can locate sensors into a polyhedral environment that are able to see the features of the objects in their entirety. Limitations due to real sensors can be easily taken into account. The algorithm has been implemented, and examples are also given.

Keywords

  • Sensor Planning
  • Dominant Region
  • Edge Covering
  • Important Practical Problem
  • Optimal Sensor Placement

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Chapter PDF

Download to read the full chapter text

References

  1. Abrams, S., Allen, P.K., Tarabanis, K.A.: Computing camera viewpoints in a robot work-cell. In: Proc. 1996 IEEE Int. Conf. Robotics and Autom., pp. 1972–1979 (1996)

    Google Scholar 

  2. Baase, S.: Computer algorithms. Addison-Wesley, New York (1988)

    Google Scholar 

  3. Bottino, A., Laurentini, A.: Optimal positioning of sensors in 2D. In: Sanfeliu, A., Martínez Trinidad, J.F., Carrasco Ochoa, J.A. (eds.) CIARP 2004. LNCS, vol. 3287, pp. 53–58. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  4. Chen, S.Y., Li, Y.F.: Automatic sensor placement for model-based robot vision. In: To appear in IEEE Trans. On Systems, Man,and Cybernetics,

    Google Scholar 

  5. Cowan, C.K., Kovesi, P.D.: Automatic sensor placement from vision task requirements. IEEE Trans. Pattern Analysis and Machine Intelligence 10(3), 407–416 (1988)

    CrossRef  Google Scholar 

  6. Danner, T., Kavraki, L.E.: Randomized planning for short inspection paths. In: Proc. 2000 IEEE Int. Conf. Robotics and Autom., pp. 971–976 (April 2000)

    Google Scholar 

  7. Fleishman, S., Cohen-Or, D., Lishinski, D.: Automatic camera placement for image-based modelling. Computer Graphic Forum, 101–110 (June 2000)

    Google Scholar 

  8. Gigus, Z., Canny, J.: Efficiently computing and representing the aspect graphs of polyhedral objects. IEEE Trans. PAMI 13(6), 542–551 (1991)

    Google Scholar 

  9. Kazakakis, G.D., Argyros, A.A.: Fast positioning of limited visibility guards for inspection of 2D workspaces. In: Proc. 2002 IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, pp. 2843–2848 (October 2002)

    Google Scholar 

  10. Laurentini, A.: Guarding the walls of an art gallery. The Visual Computer 15, 265–278 (1999)

    CrossRef  Google Scholar 

  11. Nemhauser, G., Wolsey, L.: nteger and Combinatorial Optimization. John Wiley & Sons, Chichester (1988)

    Google Scholar 

  12. Newman, T.S., Jain, A.K.: A survey of automated visual inspection. Comput. Vis. Image Understand. 61(2), 231–262 (1995)

    CrossRef  Google Scholar 

  13. O’Rourke, J.: Art gallery theorems and algorithms. Oxford University Press, New York (1987)

    MATH  Google Scholar 

  14. Goodman, J.E., O’Rourke, J.: Discrete and Computational Geometry. Chapman and Hall, New York (2004)

    MATH  Google Scholar 

  15. Scott, W.R., Roth, G.: View Planning for Automated Three-Dimensional Object Reconstruction and Inspection. ACM Computing Surveys 35(1), 64–96 (2003)

    CrossRef  Google Scholar 

  16. Shermer, T.: Recent results in art galleries. IEEE Proc. 80, 1384–1399 (1992)

    CrossRef  Google Scholar 

  17. Simsarian, K.T., Olson, T.J., Nandhakumar, N.: View-invariant regions and mobile robot self-localization. IEEE Trans. Robot. and Automat. 12(5), 810–816 (1996)

    CrossRef  Google Scholar 

  18. Talluri, R., Aggarwal, J.K.: Mobile robot self-location using model-image feature correspondence. IEEE Trans. On Robotics and Automation 12(1), 63–77 (1996)

    CrossRef  Google Scholar 

  19. Tarabanis, K.A., Allen, P.K., Tsai, R.Y.: A survey of sensor planning in computer vision. IEEE Trans. Robot. and Automat. 11(1), 86–104 (1995)

    CrossRef  Google Scholar 

  20. Tarabanis, K.A., Allen, P.K., Tsai, R.Y.: The MVP sensor planning system for robotic vision tasks. IEEE Trans. Robot. and Automat. 11(1), 72–85 (1995)

    CrossRef  Google Scholar 

  21. Tarabanis, K., Tsai, R.Y., Kaul, A.: Computing occlusion-free viewpoint. IEEE Trans. PAMI 18(3), 279–292 (1996)

    Google Scholar 

  22. Trucco, E., Umasuthan, M., Fallace, A.M., Roberto, V.: Model –based planning of optimal sensor placements for inspection. IEEE Trans. Robot. and Automat. 13(2), 182–194 (1997)

    CrossRef  Google Scholar 

  23. Urrutia, J.: Art Gallery and Illumination Problems. In: Sack, J.R., Urrutia, J. (eds.) Handbook on Computational Geometry, pp. 973–1026. Elsevier Science Publishers, Amsterdam (2000)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Dipartimento di Automatica e Informatica, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy

    Andrea Bottino & Aldo Laurentini

Authors
  1. Andrea Bottino
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Aldo Laurentini
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Dept. System Engineering and Automation, Universitat Politècnica de Catalunya (UPC) Barcelona, Spain

    Alberto Sanfeliu

  2. Pattern Recognition Group, ICIMAF, Havana, Cuba

    Manuel Lazo Cortés

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bottino, A., Laurentini, A. (2005). Optimal Positioning of Sensors in 3D. In: Sanfeliu, A., Cortés, M.L. (eds) Progress in Pattern Recognition, Image Analysis and Applications. CIARP 2005. Lecture Notes in Computer Science, vol 3773. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11578079_84

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/11578079_84

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29850-2

  • Online ISBN: 978-3-540-32242-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

  • The International Association for Pattern Recognition

    Published in cooperation with

    http://www.iapr.org/

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature