Advertisement

Optimal Positioning of Sensors in 3D

  • Andrea Bottino
  • Aldo Laurentini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3773)

Abstract

Locating the minimum number of sensors able to see at the same time the entire surface of an object is an important practical problem. Most work presented in this area is restricted to 2D objects. In this paper we present an optimal 3D sensor location algorithms that can locate sensors into a polyhedral environment that are able to see the features of the objects in their entirety. Limitations due to real sensors can be easily taken into account. The algorithm has been implemented, and examples are also given.

Keywords

Sensor Planning Dominant Region Edge Covering Important Practical Problem Optimal Sensor Placement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abrams, S., Allen, P.K., Tarabanis, K.A.: Computing camera viewpoints in a robot work-cell. In: Proc. 1996 IEEE Int. Conf. Robotics and Autom., pp. 1972–1979 (1996)Google Scholar
  2. 2.
    Baase, S.: Computer algorithms. Addison-Wesley, New York (1988)Google Scholar
  3. 3.
    Bottino, A., Laurentini, A.: Optimal positioning of sensors in 2D. In: Sanfeliu, A., Martínez Trinidad, J.F., Carrasco Ochoa, J.A. (eds.) CIARP 2004. LNCS, vol. 3287, pp. 53–58. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Chen, S.Y., Li, Y.F.: Automatic sensor placement for model-based robot vision. In: To appear in IEEE Trans. On Systems, Man,and Cybernetics,Google Scholar
  5. 5.
    Cowan, C.K., Kovesi, P.D.: Automatic sensor placement from vision task requirements. IEEE Trans. Pattern Analysis and Machine Intelligence 10(3), 407–416 (1988)CrossRefGoogle Scholar
  6. 6.
    Danner, T., Kavraki, L.E.: Randomized planning for short inspection paths. In: Proc. 2000 IEEE Int. Conf. Robotics and Autom., pp. 971–976 (April 2000)Google Scholar
  7. 7.
    Fleishman, S., Cohen-Or, D., Lishinski, D.: Automatic camera placement for image-based modelling. Computer Graphic Forum, 101–110 (June 2000)Google Scholar
  8. 8.
    Gigus, Z., Canny, J.: Efficiently computing and representing the aspect graphs of polyhedral objects. IEEE Trans. PAMI 13(6), 542–551 (1991)Google Scholar
  9. 9.
    Kazakakis, G.D., Argyros, A.A.: Fast positioning of limited visibility guards for inspection of 2D workspaces. In: Proc. 2002 IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, pp. 2843–2848 (October 2002)Google Scholar
  10. 10.
    Laurentini, A.: Guarding the walls of an art gallery. The Visual Computer 15, 265–278 (1999)CrossRefGoogle Scholar
  11. 11.
    Nemhauser, G., Wolsey, L.: nteger and Combinatorial Optimization. John Wiley & Sons, Chichester (1988)Google Scholar
  12. 12.
    Newman, T.S., Jain, A.K.: A survey of automated visual inspection. Comput. Vis. Image Understand. 61(2), 231–262 (1995)CrossRefGoogle Scholar
  13. 13.
    O’Rourke, J.: Art gallery theorems and algorithms. Oxford University Press, New York (1987)zbMATHGoogle Scholar
  14. 14.
    Goodman, J.E., O’Rourke, J.: Discrete and Computational Geometry. Chapman and Hall, New York (2004)zbMATHGoogle Scholar
  15. 15.
    Scott, W.R., Roth, G.: View Planning for Automated Three-Dimensional Object Reconstruction and Inspection. ACM Computing Surveys 35(1), 64–96 (2003)CrossRefGoogle Scholar
  16. 16.
    Shermer, T.: Recent results in art galleries. IEEE Proc. 80, 1384–1399 (1992)CrossRefGoogle Scholar
  17. 17.
    Simsarian, K.T., Olson, T.J., Nandhakumar, N.: View-invariant regions and mobile robot self-localization. IEEE Trans. Robot. and Automat. 12(5), 810–816 (1996)CrossRefGoogle Scholar
  18. 18.
    Talluri, R., Aggarwal, J.K.: Mobile robot self-location using model-image feature correspondence. IEEE Trans. On Robotics and Automation 12(1), 63–77 (1996)CrossRefGoogle Scholar
  19. 19.
    Tarabanis, K.A., Allen, P.K., Tsai, R.Y.: A survey of sensor planning in computer vision. IEEE Trans. Robot. and Automat. 11(1), 86–104 (1995)CrossRefGoogle Scholar
  20. 20.
    Tarabanis, K.A., Allen, P.K., Tsai, R.Y.: The MVP sensor planning system for robotic vision tasks. IEEE Trans. Robot. and Automat. 11(1), 72–85 (1995)CrossRefGoogle Scholar
  21. 21.
    Tarabanis, K., Tsai, R.Y., Kaul, A.: Computing occlusion-free viewpoint. IEEE Trans. PAMI 18(3), 279–292 (1996)Google Scholar
  22. 22.
    Trucco, E., Umasuthan, M., Fallace, A.M., Roberto, V.: Model –based planning of optimal sensor placements for inspection. IEEE Trans. Robot. and Automat. 13(2), 182–194 (1997)CrossRefGoogle Scholar
  23. 23.
    Urrutia, J.: Art Gallery and Illumination Problems. In: Sack, J.R., Urrutia, J. (eds.) Handbook on Computational Geometry, pp. 973–1026. Elsevier Science Publishers, Amsterdam (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Andrea Bottino
    • 1
  • Aldo Laurentini
    • 1
  1. 1.Dipartimento di Automatica e InformaticaPolitecnico di TorinoTorinoItaly

Personalised recommendations