Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

Iberoamerican Congress on Pattern Recognition

CIARP 2005: Progress in Pattern Recognition, Image Analysis and Applications pp 71–80Cite as

  1. Home
  2. Progress in Pattern Recognition, Image Analysis and Applications
  3. Conference paper
A Computational Approach to Illusory Contour Perception Based on the Tensor Voting Technique

A Computational Approach to Illusory Contour Perception Based on the Tensor Voting Technique

  • Marcus Hund18 &
  • Bärbel Mertsching18 
  • Conference paper
  • 1118 Accesses

  • 3 Citations

Part of the Lecture Notes in Computer Science book series (LNIP,volume 3773)

Abstract

A computational approach to the perception of illusory contours is introduced. The approach is based on the tensor voting technique and applied to several real and synthetic images. Special interest is given to the design of the communication pattern for spatial contour integration, called voting field.

Keywords

  • Human Vision System
  • Perceptual Grouping
  • Illusory Contour
  • Amodal Completion
  • Tensor Vote

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Chapter PDF

Download to read the full chapter text

References

  1. Anderson, B.L., Singh, M., Fleming, R.W.: The interpolation of object and surface structure. Cognitive Psychology 44, 148–190 (2002)

    CrossRef  Google Scholar 

  2. Ehrenstein, W.H., Spillmann, L., Sarris, V.: Gestalt issues in modern neuroscience. Axiomathes 13(3), 433–458 (2003)

    CrossRef  Google Scholar 

  3. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, Englewood Cliffs (2002)

    Google Scholar 

  4. Guy, G., Medioni, G.: Inferring global perceptual contours from local features. International Journal of Computer Vision 20(1-2), 113–133 (1996)

    CrossRef  Google Scholar 

  5. Hansen, T.: A neural model of early vision: Contrast, contours, corners and surfaces. PhD thesis, Universität Ulm (2003)

    Google Scholar 

  6. Hansen, T., Neumann, H.: Neural mechanisms for representing surface and contour features. In: Emergent Neural Computational Architectures Based on Neuroscience - Towards Neuroscience-Inspired Computing, pp. 139–153. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  7. Heitger, F., von der Heydt, R.: A computational model of neural contour processing: Figure-ground segregation and illusory contours. In: International Conference on Computer Vision, pp. 32–40 (1993)

    Google Scholar 

  8. Kanizsa, G. (ed.): Organization in Vision. Praeger, Westport (1979)

    Google Scholar 

  9. Kellman, P.J., Guttman, S.E., Wickens, T.D.: Geometric and neural models of object perception. In: Shipley, T.F., Kellman, P.J. (eds.) From fragments to objects: Segmentation and grouping in vision. Elsevier Science, Oxford (2001)

    Google Scholar 

  10. Koffka, K.: Principles of Gestalt psychology. Harcourt Brace, New York (1935)

    Google Scholar 

  11. Marr, D.: Vision: a computational investigation into the human representation and processing of visual information. W. H. Freeman, San Francisco (1982)

    Google Scholar 

  12. Massad, A., Babos, M., Mertsching, B.: Application of the tensor voting technique for perceptual grouping to grey-level images. In: Van Gool, L. (ed.) DAGM 2002. LNCS, vol. 2449, pp. 306–313. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  13. Massad, A., Babos, M., Mertsching, B.: Perceptual grouping in grey level images by combination of gabor filtering and tensor voting. In: Kasturi, R., Laurendeau, D., Suen, C. (eds.) ICPR, vol. 2, pp. 677–680 (2002)

    Google Scholar 

  14. Massad, A., Babos, M., Mertsching, B.: Application of the tensor voting technique for perceptual grouping to grey-level images: Quantitative evaluation. In: Intl. Symposium on Image and Signal Processing and Analysis (2003)

    Google Scholar 

  15. Massad, A., Medioni, G.: 2-D Shape Decomposition into Overlapping Parts. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 398–409. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  16. Massad, A., Mertsching, B.: Segmentation of Spontaneously Splitting Figures into Overlapping Parts. In: Radig, B., Florczyk, S. (eds.) DAGM 2001. LNCS, vol. 2191, pp. 25–31. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  17. Medioni, G., Lee, M.-S., Tang, C.-K.: A Computational Framework for Segmentation and Grouping. Elsevier Science, Amsterdam (2000)

    MATH  Google Scholar 

  18. Mokhtarian, F., Suomela, R.: Robust image corner detection through curvature scale space. IEEE Trans. Pattern Anal. Mach. Intell. 20(12), 1376–1381 (1998)

    CrossRef  Google Scholar 

  19. Neumann, H., Mingolla, E.: Computational neural models of spatial integration in perceptual grouping. In: Shipley, T., Kellman, P. (eds.) From fragments to units: Segmentation and grouping in vision, pp. 353–400. Elsevier Science, Oxford (2001)

    CrossRef  Google Scholar 

  20. Nieder, A.: Seeing more than meets the eye: processing of illusory contours in animals. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology 188(4), 249–260 (2002)

    CrossRef  Google Scholar 

  21. Parent, P., Zucker, S.: Trace inference, curvature consistency, and curve detection. IEEE Trans. Pattern Anal. Mach. Intell. 11(8), 823–839 (1989)

    CrossRef  Google Scholar 

  22. Peterhans, E., Heitger, F.: Simulation of neuronal responses defining depth order and contrast polarity at illusory contours in monkey area v2. Journal of Computational Neuroscience 10(2), 195–211 (2001)

    CrossRef  Google Scholar 

  23. Ross, W.D., Grossberg, S., Mingolla, E.: Visual cortical mechanisms of perceptual grouping: interacting layers, networks, columns, and maps. Neural Netw. 13(6), 571–588 (2000)

    CrossRef  Google Scholar 

  24. Schumann, F.: Beiträge zur Analyse der Gesichtswahrnehmungen. Erste Abhandlung. Einige Beobachtungen über die Zusammenfassung von Gesichtseindrücken zu Einheiten. Zeitschrift für Psychologie und Physiologie der Sinnesorgane 23, 1–32 (1900); English translation by A. Hogg (1987) in The perception of Illusory Contours, Petry, S., Meyer, G.E. (eds.), pp. 40–49. Springer, New York (1987)

    Google Scholar 

  25. Wertheimer, M.: Untersuchungen zur Lehre von der Gestalt II. Psychologische Forschung 4, 301–350 (1923)

    CrossRef  Google Scholar 

  26. Williams, L.R., Thornber, K.K.: A comparison of measures for detecting natural shapes in cluttered backgrounds. International Journal of Computer Vision 34(2/3), 81–96 (2000)

    CrossRef  Google Scholar 

  27. Ziou, D., Tabbone, S.: Edge detection techniques: an overview. International Journal on Pattern Recognition and Image Analysis 8(4), 537–559 (1998)

    Google Scholar 

  28. Zweck, J.W., Williams, L.R.: Euclidean group invariant computation of stochastic completion fields using shiftable-twistable functions. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 100–116. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Dept. of Electrical Engineering, GET-Lab, University of Paderborn, Pohlweg 47-49, D-33098, Paderborn, Germany

    Marcus Hund & Bärbel Mertsching

Authors
  1. Marcus Hund
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Bärbel Mertsching
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Dept. System Engineering and Automation, Universitat Politècnica de Catalunya (UPC) Barcelona, Spain

    Alberto Sanfeliu

  2. Pattern Recognition Group, ICIMAF, Havana, Cuba

    Manuel Lazo Cortés

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hund, M., Mertsching, B. (2005). A Computational Approach to Illusory Contour Perception Based on the Tensor Voting Technique. In: Sanfeliu, A., Cortés, M.L. (eds) Progress in Pattern Recognition, Image Analysis and Applications. CIARP 2005. Lecture Notes in Computer Science, vol 3773. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11578079_8

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/11578079_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29850-2

  • Online ISBN: 978-3-540-32242-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

  • The International Association for Pattern Recognition

    Published in cooperation with

    http://www.iapr.org/

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature