A Computational Approach to Illusory Contour Perception Based on the Tensor Voting Technique

  • Marcus Hund
  • Bärbel Mertsching
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3773)


A computational approach to the perception of illusory contours is introduced. The approach is based on the tensor voting technique and applied to several real and synthetic images. Special interest is given to the design of the communication pattern for spatial contour integration, called voting field.


Human Vision System Perceptual Grouping Illusory Contour Amodal Completion Tensor Vote 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anderson, B.L., Singh, M., Fleming, R.W.: The interpolation of object and surface structure. Cognitive Psychology 44, 148–190 (2002)CrossRefGoogle Scholar
  2. 2.
    Ehrenstein, W.H., Spillmann, L., Sarris, V.: Gestalt issues in modern neuroscience. Axiomathes 13(3), 433–458 (2003)CrossRefGoogle Scholar
  3. 3.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, Englewood Cliffs (2002)Google Scholar
  4. 4.
    Guy, G., Medioni, G.: Inferring global perceptual contours from local features. International Journal of Computer Vision 20(1-2), 113–133 (1996)CrossRefGoogle Scholar
  5. 5.
    Hansen, T.: A neural model of early vision: Contrast, contours, corners and surfaces. PhD thesis, Universität Ulm (2003)Google Scholar
  6. 6.
    Hansen, T., Neumann, H.: Neural mechanisms for representing surface and contour features. In: Emergent Neural Computational Architectures Based on Neuroscience - Towards Neuroscience-Inspired Computing, pp. 139–153. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Heitger, F., von der Heydt, R.: A computational model of neural contour processing: Figure-ground segregation and illusory contours. In: International Conference on Computer Vision, pp. 32–40 (1993)Google Scholar
  8. 8.
    Kanizsa, G. (ed.): Organization in Vision. Praeger, Westport (1979)Google Scholar
  9. 9.
    Kellman, P.J., Guttman, S.E., Wickens, T.D.: Geometric and neural models of object perception. In: Shipley, T.F., Kellman, P.J. (eds.) From fragments to objects: Segmentation and grouping in vision. Elsevier Science, Oxford (2001)Google Scholar
  10. 10.
    Koffka, K.: Principles of Gestalt psychology. Harcourt Brace, New York (1935)Google Scholar
  11. 11.
    Marr, D.: Vision: a computational investigation into the human representation and processing of visual information. W. H. Freeman, San Francisco (1982)Google Scholar
  12. 12.
    Massad, A., Babos, M., Mertsching, B.: Application of the tensor voting technique for perceptual grouping to grey-level images. In: Van Gool, L. (ed.) DAGM 2002. LNCS, vol. 2449, pp. 306–313. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Massad, A., Babos, M., Mertsching, B.: Perceptual grouping in grey level images by combination of gabor filtering and tensor voting. In: Kasturi, R., Laurendeau, D., Suen, C. (eds.) ICPR, vol. 2, pp. 677–680 (2002)Google Scholar
  14. 14.
    Massad, A., Babos, M., Mertsching, B.: Application of the tensor voting technique for perceptual grouping to grey-level images: Quantitative evaluation. In: Intl. Symposium on Image and Signal Processing and Analysis (2003)Google Scholar
  15. 15.
    Massad, A., Medioni, G.: 2-D Shape Decomposition into Overlapping Parts. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 398–409. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Massad, A., Mertsching, B.: Segmentation of Spontaneously Splitting Figures into Overlapping Parts. In: Radig, B., Florczyk, S. (eds.) DAGM 2001. LNCS, vol. 2191, pp. 25–31. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Medioni, G., Lee, M.-S., Tang, C.-K.: A Computational Framework for Segmentation and Grouping. Elsevier Science, Amsterdam (2000)zbMATHGoogle Scholar
  18. 18.
    Mokhtarian, F., Suomela, R.: Robust image corner detection through curvature scale space. IEEE Trans. Pattern Anal. Mach. Intell. 20(12), 1376–1381 (1998)CrossRefGoogle Scholar
  19. 19.
    Neumann, H., Mingolla, E.: Computational neural models of spatial integration in perceptual grouping. In: Shipley, T., Kellman, P. (eds.) From fragments to units: Segmentation and grouping in vision, pp. 353–400. Elsevier Science, Oxford (2001)CrossRefGoogle Scholar
  20. 20.
    Nieder, A.: Seeing more than meets the eye: processing of illusory contours in animals. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology 188(4), 249–260 (2002)CrossRefGoogle Scholar
  21. 21.
    Parent, P., Zucker, S.: Trace inference, curvature consistency, and curve detection. IEEE Trans. Pattern Anal. Mach. Intell. 11(8), 823–839 (1989)CrossRefGoogle Scholar
  22. 22.
    Peterhans, E., Heitger, F.: Simulation of neuronal responses defining depth order and contrast polarity at illusory contours in monkey area v2. Journal of Computational Neuroscience 10(2), 195–211 (2001)CrossRefGoogle Scholar
  23. 23.
    Ross, W.D., Grossberg, S., Mingolla, E.: Visual cortical mechanisms of perceptual grouping: interacting layers, networks, columns, and maps. Neural Netw. 13(6), 571–588 (2000)CrossRefGoogle Scholar
  24. 24.
    Schumann, F.: Beiträge zur Analyse der Gesichtswahrnehmungen. Erste Abhandlung. Einige Beobachtungen über die Zusammenfassung von Gesichtseindrücken zu Einheiten. Zeitschrift für Psychologie und Physiologie der Sinnesorgane 23, 1–32 (1900); English translation by A. Hogg (1987) in The perception of Illusory Contours, Petry, S., Meyer, G.E. (eds.), pp. 40–49. Springer, New York (1987)Google Scholar
  25. 25.
    Wertheimer, M.: Untersuchungen zur Lehre von der Gestalt II. Psychologische Forschung 4, 301–350 (1923)CrossRefGoogle Scholar
  26. 26.
    Williams, L.R., Thornber, K.K.: A comparison of measures for detecting natural shapes in cluttered backgrounds. International Journal of Computer Vision 34(2/3), 81–96 (2000)CrossRefGoogle Scholar
  27. 27.
    Ziou, D., Tabbone, S.: Edge detection techniques: an overview. International Journal on Pattern Recognition and Image Analysis 8(4), 537–559 (1998)Google Scholar
  28. 28.
    Zweck, J.W., Williams, L.R.: Euclidean group invariant computation of stochastic completion fields using shiftable-twistable functions. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 100–116. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Marcus Hund
    • 1
  • Bärbel Mertsching
    • 1
  1. 1.Dept. of Electrical Engineering, GET-LabUniversity of PaderbornPaderbornGermany

Personalised recommendations