Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

Iberoamerican Congress on Pattern Recognition

CIARP 2005: Progress in Pattern Recognition, Image Analysis and Applications pp 762–769Cite as

  1. Home
  2. Progress in Pattern Recognition, Image Analysis and Applications
  3. Conference paper
Maximum Correlation Search Based Watermarking Scheme Resilient to RST

Maximum Correlation Search Based Watermarking Scheme Resilient to RST

  • Sergio Bravo18 &
  • Felix Calderón18 
  • Conference paper
  • 1037 Accesses

Part of the Lecture Notes in Computer Science book series (LNIP,volume 3773)

Abstract

Many of the watermarking schemes that claim resilience to geometrical distortions embed information into invariant or semi-invariant domains. However, the discretisation process required in such domains might lead to low correlation responses during watermarking detection. In this document, a new strategy is proposed to provide resilience to strong Rotation, Scaling and Translation (RST) distortions. The proposed detection process is based on a Genetic Algorithm (GA) that maximises the correlation coefficient between the originally embedded watermark and the input image. Comparisons between a previous scheme, based on Log-Polar Mapping (LPM), and the present approach are reported. Results show that even a simple insertion process provides more robustness, as well as a lower image degradation.

Keywords

  • Watermark Scheme
  • Geometrical Distortion
  • Digital Watermark
  • Quantisation Index Modulation
  • Template Attack

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Chapter PDF

Download to read the full chapter text

References

  1. Brown, L.G.: A survey of image registration techniques. ACM Computing Surveys 24, 325–376 (1992)

    CrossRef  Google Scholar 

  2. Fleet, D.J., Heeger, D.J.: Embedding invisible information in color images. In: IEEE Signal Processing Society 1997 International Conference on Image Processing (ICIP 1997), Santa Barbara, CA (1997)

    Google Scholar 

  3. Pereira, S., Pun, T.: An iterative template matching algorithm using the chirp-z transform for digital image watermarking. Pattern Recognition 33, 173–175 (2000)

    CrossRef  Google Scholar 

  4. Kutter, M., Hartung, F.: 5. Computer Security Series. In: Introduction to Watermarking Techniques, 1st edn., pp. 97–120. Artech House (2000)

    Google Scholar 

  5. Deguillaume, F., Voloshynovskiy, S., Pun, T.: A method for the estimation and recovering of general affine transform. US Patent Application (2002)

    Google Scholar 

  6. Craver, S., Periig, A., Petitcolas, F.A.P.: 7. Computer Security Series. In: Robustness of copyright marking systems, 1st edn., pp. 149–174. Artech House (2000)

    Google Scholar 

  7. Herrigel, A., Voloshynovskiy, S., Rytsar, Y.: The watermark template attack (2001)

    Google Scholar 

  8. O’ Ruanaidh, J.J.K., Pun, T.: Rotation, scale and translation invariant digital image watermarking. In: Proceedings of ICIP 1997, IEEE International Conference on Image Processing, Santa Barbara, CA, pp. 536–539 (1997)

    Google Scholar 

  9. Lin, C.Y., Wu, M., Bloom, J.A., Cox, I.J., Miller, M.L., Lui, Y.M.: Rotation, scale, and translation resilient watermarking for images. IEEE Transactions on Image Processing 10, 767–782 (2001)

    CrossRef  MATH  Google Scholar 

  10. Dong, P., Galatsanos, N.P.: Affine transformation resistant watermarking based on image normalization. In: Proceedings of the IEEE International Conference on Image Processing (ICIP 2002), Rochester, NY, USA (2002)

    Google Scholar 

  11. Feng, Y., Izquierdo, E.: Robust local watermarking on salient image areas. In: Petitcolas, F.A.P., Kim, H.-J. (eds.) IWDW 2002. LNCS, vol. 2613, pp. 180–201. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  12. Tang, C.W., Hang, H.M.: A feature-based robust digital image watermarking scheme. Signal Processing 51, 950–959 (2003)

    MathSciNet  Google Scholar 

  13. Zelniker, G., Taylor, F.J.: Advanced Digital Signal Processing: Theory and Applications. Marcel Dekker, Inc., New York (1993)

    Google Scholar 

  14. Depovere, G., Kalker, T., Linnartz, J.P.M.G.: Improved watermark detection reliability using filtering before correlation. In: ICIP, vol. (1), pp. 430–434 (1998)

    Google Scholar 

  15. Cox, I., Kilian, J., Leighton, T., Shamoon, T.: Secure spread spectrum watermarking for multimedia. IEEE Transactions on Image Processing 6, 1673–1687 (1997)

    CrossRef  Google Scholar 

  16. Haupt, R.L., Haupt, S.E.: Practical genetic algorithms. John Wiley & Sons, Inc., New York (1998)

    MATH  Google Scholar 

  17. Cox, I.J., Miller, M.L., Bloom, J.A.: Digital Watermarking, 1st edn. Morgan Kaufman, San Francisco (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. División de Estudios de Posgrado de Ingeniería Eléctrica, Universidad Michoacana de San Nicolás de Hidalgo, Santiago Tapia 403 Centro, Morelia, Michoacán, CP 58000, México

    Sergio Bravo & Felix Calderón

Authors
  1. Sergio Bravo
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Felix Calderón
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Dept. System Engineering and Automation, Universitat Politècnica de Catalunya (UPC) Barcelona, Spain

    Alberto Sanfeliu

  2. Pattern Recognition Group, ICIMAF, Havana, Cuba

    Manuel Lazo Cortés

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bravo, S., Calderón, F. (2005). Maximum Correlation Search Based Watermarking Scheme Resilient to RST. In: Sanfeliu, A., Cortés, M.L. (eds) Progress in Pattern Recognition, Image Analysis and Applications. CIARP 2005. Lecture Notes in Computer Science, vol 3773. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11578079_79

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/11578079_79

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29850-2

  • Online ISBN: 978-3-540-32242-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

  • The International Association for Pattern Recognition

    Published in cooperation with

    http://www.iapr.org/

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature