Real-Time Kalman Filtering for Nonuniformity Correction on Infrared Image Sequences: Performance and Analysis

  • Sergio K. Sobarzo
  • Sergio N. Torres
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3773)


A scene-based method for nonuniformity correction of infrared image sequences is developed and tested. The method uses the information embedded in the scene and performs the correction in a frame by frame Kalman Filter approach. The key assumption of the method is that the uncertainty on the input infrared irradiance integrated by each detector is solved using the spatial infrared information collected from the scene. The performance of the method is tested using infrared image sequences captured by two infrared cameras.


Infrared Sensor-Imaging Infrared Focal Plane Arrays Signal Processing Kalman Filtering Image Coding Processing and Analysis 


  1. 1.
    Holst, G.: CCD arrays, cameras and displays. SPIE Optical Engineering Press, Bellingham (1996)Google Scholar
  2. 2.
    Scribner, D.A., Sarkady, K.A., Caulfield, J.T., Kruer, M.R., Katz, G.: Nonuniformity correction for staring IR focal plane arrays using scene-based techniques. SPIE 1308, 224–233 (1990)CrossRefGoogle Scholar
  3. 3.
    Scribner, D., Kruer, M., Killiany, J.: Infrared Focal Plane Array Technology. IEEE 79(1), 66–85 (1991)CrossRefGoogle Scholar
  4. 4.
    Scribner, D.A., Sarkady, K.A., Kruer, M.R., Caulfield, J.T., Hunt, J.D., Colbert, M.: Adaptive Retina-Like Preprocessing for Imaging Detector Arrays. IEEE 3, 1955–1960 (1993)Google Scholar
  5. 5.
    Schulz, M.: Nonuniformity correction and correctability of infrared focal plane arrays. Infrared Physics and Technology 36, 763–777 (1995)CrossRefGoogle Scholar
  6. 6.
    Harris, J.G., Chiang, Y.-M.: Non Uniformity Correction Using Constant Statics Constraint: Analog and Digital Implementation. In: Proc. SPIE, vol. 3061, pp. 895–905 (1997), 1997Google Scholar
  7. 7.
    Torres, S., Hayat, M.: Kalman filtering for adaptive nonuniformity correction in Infrared Focal Plane Arrays. The Journal of the Optical Society of America A 20, 470–480 (2003)CrossRefGoogle Scholar
  8. 8.
    Andrew, H.C.: Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  9. 9.
    Kalman, R.E.: A New Approach to Linear Filtering and Prediction Problems. Transactions of the ASME-Journal of Basic Engineering 82(Series D), 35–45 (1960)Google Scholar
  10. 10.
    Minkler, G., Minkler, J.: Theory and Application of the Kalman Filtering. Magellan Book Company (1993)Google Scholar
  11. 11.
    Wang, Z., Bovik, A.: A Universal Image Quality Index. IEEE Signal Processing Letters 20, 1–4 (2002)Google Scholar
  12. 12.
    González, R., Woods, R.: Digital Image Processing. Addison Wesley, Reading (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Sergio K. Sobarzo
    • 1
  • Sergio N. Torres
    • 1
  1. 1.Department of Electrical EngineeringUniversity of ConcepciónConcepciónChile

Personalised recommendations