Advertisement

Active Contour and Morphological Filters for Geometrical Normalization of Human Face

  • Gabriel Hernández Sierra
  • Edel Garcia Reyes
  • Gerardo Iglesias Ham
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3773)

Abstract

In this paper we resolve the problem of automatically normalize front view photos from a database that contain images of human faces with different size, angle and position. It was used a template with a standardized inter eye distance and dimensions. We are mapping all images to this template applying a geometrical transformation. It is necessary to obtain the eyes positions on image to calculate the transforms parameters. That is not a trivial problem. We use active contour to detect the human face. After that, we apply morphological filters to highlight image signal amplitude in the eyes positions. A set of criterion is applied to select a pair of point with more possibility to be the eyes. Then, a subroutine is feed with eyes coordinates to calculate and apply the geometrical transformation. Our method was applied to 500 photos and it performs very well in the 94% of all cases.

Keywords

Face Recognition Face Image Active Contour Face Detection Human Face 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    García-Mateos, G., Ruiz, A., Lopez-de-Teruel, P.: Face Detection Using Integral Projection Models. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 644–653. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Graciano, A.B., Cesar, R.M., Bloch, I.: Inexact Graph Matching for Facial Feature Segmentation and Recognition in Video Sequences: Results on Face Tracking. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) Progress in Pattern Recognition, Speech and Image Analysis. LNCS, vol. 2935, pp. 71–78. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Haddadnia, J., Ahmadi, M., Faez, K.: Human Face Recognition with different statistical feature. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 627–635. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Hamouz, M., Kittler, J., Matas, J., Bilek, P.: Face Detection by Learned Affine Correspondences. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 566–575. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Huang, Y., Tsai, Y.: A transformation-based mechanism for face recognition. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 566–575. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Huang, W., Sun, Q., Lam, C.-P., Wu, J.-K.: A robust approach to face and eyes detection from images with cluttered background. In: Proc. IEEE Int’l Conf., Pattern Recognition, vol. 1, pp. 110–114 (1998)Google Scholar
  7. 7.
    Jackway, P.T., Deriche, M.: Scale-space properties of the multiscale morphological dilation-erosion. IEEE Trans. Pattern Analysis and Machine Intelligence 18, 38–51 (1996)CrossRefGoogle Scholar
  8. 8.
    Ko., J., Kim, E., Byun, H.: Illumination Normalized Face image for Face Recognition. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 654–661. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Lam, K.M., Yan, H.: Locating and extracting the eye in human face images. Pattern Recognition 29(5), 771–779 (1996)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Lanitis, A., Taylor, C.J., Cootes, T.F.: Automatic interpretation and coding of face images using flexible models. IEEE Trans. Pattern Analysis and Machine Intelligence 19(7), 743–756 (1997)CrossRefGoogle Scholar
  11. 11.
    Sirohey, S., Rosenfeld, A.: Eye detection. Technical Report CS-TR-3971, Univ. of Maryland (1998)Google Scholar
  12. 12.
    Smeraldi, F., Carmona, O., Bigün, J.: Saccadic search with Gabor features applied to eye detection and real-time head tracking. Image and Vision Computing 18(4), 323–329 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Gabriel Hernández Sierra
    • 1
  • Edel Garcia Reyes
    • 1
  • Gerardo Iglesias Ham
    • 1
  1. 1.Advanced Technologies Application CenterMINBASPlaya, Ciudad de la HabanaCuba

Personalised recommendations