An Efficient Path-Generation Method for Virtual Colonoscopy

  • Jeongjin Lee
  • Helen Hong
  • Yeong Gil Shin
  • Soo-Hong Kim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3773)


Virtual colonoscopy is a non-invasive method for diagnosing colon diseases such as diverticulosis and cancer using digitized tomographic images to produce 3D images of the colon. In virtual colonoscopy, it is crucial to generate the camera path rapidly and accurately for an efficient examination. Most of the existing path-generation methods are computationally expensive since they require preliminary data structures and the 3D positions of all path points should be calculated. In this paper, we propose an automated pathgeneration method that secures visibility by emulating ray propagation through the colon conduit. The proposed method does not require any preliminary data preprocessing steps, which takes several minutes and it also dramatically reduces the number of points needed to represent the camera path. The experimental result is a perceivable increase in computational efficiency and a simpler approach to colon navigation. The proposed method can also be used in other applications that require efficient virtual navigation.


Control Point Optimal Path Colon Wall Virtual Colonoscopy Virtual Camera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Dogramadzi, S., Allen, C.R., Bell, G.D.: Computer Controlled Colonoscopy. In: Proceedings of IEEE Instrumentation and Measurement Technology Conference, vol. 1, pp. 210–213 (1998)Google Scholar
  2. 2.
    Phee, S.J., Ng, W.S., Chen, I.M., Seow-Choen, F., Davies, B.L.: Automation of Colonoscopy. II. Visual control aspects. IEEE Engineering in Medicine and Biology Magazine 17(3), 81–88 (1998)CrossRefGoogle Scholar
  3. 3.
    Hong, L., Kaufman, A., Wei, Y., Viswambharan, A., Wax, M., Liang, Z.: 3D Virtual Colonoscopy. In: Proceedings of IEEE Biomedical Visualization, pp. 26–32 (1995)Google Scholar
  4. 4.
    Lee, T.Y., Lin, P.H., Lin, C.H., Sun, Y.N., Lin, X.Z.: Interactive 3-D Virtual Colonoscopy System. IEEE Transactions on Information Technology in Biomedicine 3(2), 139–150 (1999)zbMATHCrossRefGoogle Scholar
  5. 5.
    Hong, L., Muraki, S., Kaufman, A.E., Bartz, D., He, T.: Virtual Voyage: Interactive Navigation in the Human Colon. In: Proceedings of ACM SIGGRAPH, pp. 27–34 (1997)Google Scholar
  6. 6.
    Rubin, G., Beaulieu, C., Argiro, V., Ringl, H., Norbash, A., Feller, J., Dake, M., Jeffey, R., Napel, S.: Perspective Volume Rendering of CT and MR Images: Applications for Endoscopic Imaging. Radiology 199(2), 321–330 (1996)Google Scholar
  7. 7.
    Pickhardt, P.J., Choi, J.R., Hwang, I., Butler, J.A., Puckett, M.L., Hildebrandt, H.A., Wong, R.K., Nugent, P.A., Mysliwiec, P.A., Schindler, W.R.: Computed Tomographic Virtual Colonoscopy to Screen for Colorectal Neoplasia in Asymptomatic Adults. The New England Journal of Medicine 349, 2191–2200 (2003)CrossRefGoogle Scholar
  8. 8.
    Vining, D., Gelfand, D., Bechtold, R., Scharling, E., Grishaw, E., Shifrin, R.: Technical Feasibility of Colon Imaging with Helical CT and Virtual Reality. In: Annual Meeting of American Roentgen Ray Society, pp. 104 (1994)Google Scholar
  9. 9.
    Paik, D.S., Beaulieu, C.F., Jeffery, R.B., Rubin, G.D., Napel, S.: Automated Flight Path Planning for Virtual Endoscopy. Medical Physics 25(5), 629–637 (1998)CrossRefGoogle Scholar
  10. 10.
    Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerishe Mathemetik 1, 269–271 (1959)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    He, T., Hong, L.: Reliable Navigation for Virtual Endoscopy. IEEE Nuclear Science Symposium 3, 1339–1343 (1999)Google Scholar
  12. 12.
    Zhou, Y., Kaufman, A.E., Toga, A.W.: Three-dimensional Skeleton and Centerline Generation Based on an Approximate Minimum Distance Field. The Visual Computer 14, 303–314 (1998)CrossRefGoogle Scholar
  13. 13.
    Bitter, I., Kaufman, A.E., Sato, M.: Penalized-distance Volumetric Skeleton Algorithm. IEEE Transactions on Visualization and Computer Graphics 7(3), 195–206 (2001)CrossRefGoogle Scholar
  14. 14.
    Levoy, M.: Efficient Ray Tracing of Volume Data. ACM Transactions on Graphics 9(3), 245–261 (1990)zbMATHCrossRefGoogle Scholar
  15. 15.
    Dehmeshki, J., Amin, H., Wong, W., Dehkordi, M.E., Kamangari, N., Roddie, M., Costelo, J.: Automatic Polyp Detection of Colon using High Resolution CT Scans. In: Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis, vol. 1, pp. 577–581 (2003)Google Scholar
  16. 16.
    Bartels, R.H., Beatty, J.C., Barsky, B.A.: An Introduction to Splines for Use in Computer Graphics and Geometric Modelling, pp. 9–17. Morgan Kaufmann, San Francisco (1998)Google Scholar
  17. 17.
    Bitter, I., Sato, M., Bender, M., McDonnel, K., Kaufman, A., Wan, M.: CEASAR: A Smooth, Accurate and Robust Centerline Extraction Algorithm. Proceedings IEEE Visualization, 45–52 (2000)Google Scholar
  18. 18.
    Wan, M., Dachille, F., Kaufman, A.: Distance-field Based Skeletons for Virtual Navigation. Proceedings of IEEE Visualization, 239–246 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jeongjin Lee
    • 1
  • Helen Hong
    • 2
  • Yeong Gil Shin
    • 1
  • Soo-Hong Kim
    • 3
  1. 1.School of Electrical Engineering and Computer ScienceSeoul National UniversitySeoulKorea
  2. 2.School of Electrical Engineering and Computer Science, BK21: Information TechnologySeoul National University 
  3. 3.Dep’t of Computer Software EgineeringSangmyung UniversityChungnamKorea

Personalised recommendations