Advertisement

Data Dependent Wavelet Filtering for Lossless Image Compression

  • Oleksiy Pogrebnyak
  • Pablo Manrique Ramírez
  • Luis Pastor Sanchez Fernandez
  • Roberto Sánchez Luna
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3773)

Abstract

A data dependent wavelet transform based on the modified lifting scheme is presented. The algorithm is based on the wavelet filters derived from a generalized lifting scheme. The proposed framework for the lifting scheme permits to obtain easily different wavelet FIR filter coefficients in the case of the (~N, N) lifting. To improve the performance of the lifting filters the presented technique additionally realizes IIR filtering by means of the feedback to the already calculated wavelet coefficients. The perfect image restoration in this case is obtained employing the particular features of the lifting scheme. Changing wavelet FIR filter order and/or FIR and IIR coefficients, one can obtain the filter frequency response that match better to the image data than the standard lifting filters, resulting in higher data compression rate. The designed algorithm was tested on different images. The obtained simulation results show that the proposed method performs better in data compression for various images in comparison to the standard technique resulting in significant savings in compressed data length.

Keywords

image processing wavelets lifting scheme adaptive compression 

References

  1. 1.
    Mallat, S.G.: A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Recognition. Machine Intell. 11(7), 674–693 (1989)zbMATHCrossRefGoogle Scholar
  2. 2.
    Vetterli, M.: Multi-dimensional sub-band coding: some theory and algorithms. Signal Processing 6, 97–112 (1984)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1998)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Sweldens, W.: The lifting scheme: A new philosophy in biorthogonal wavelet constructions, Wavelet Applications in Signal and Image Processing III. In: Laine, A.F., Unser, M. (eds.) Proc. SPIE 2569, pp. 68–79 (1995)Google Scholar
  5. 5.
    Claypoole, R., Baraniuk, R., Nowak, R.: Adaptive wavelet transforms via lifting. In: Proc. IEEE Int. Conf. Acoust., Speech, and Signal Proc. (May 1998)Google Scholar
  6. 6.
    Piella, G., Heijmans, H.J.A.M.: An adaptive update lifting scheme with perfect reconstruction. In: Proc. ICIP 2001, pp. 190–193 (October 2001)Google Scholar
  7. 7.
    Abhayaratne, G.C.K.: Spatially adaptive wavelet transforms: An optimal interpolation approach. In: Third International Workshop on Spectral Methods and Multirate Signal Processing (SMMSP 2003), Barcelona, Spain, September 12-13, pp. 155–162 (2003)Google Scholar
  8. 8.
    Pogrebnyak, O., Ramírez, P.M.: Adaptive wavelet transform for image compression applications. In: Tescher, A.G. (ed./Chair) Proc. SPIE, Applications of Digital Image Processing XXVI, San Diego, USA, August 5- 8, Vol. 5203, pp. 623–630 (2003) ISBN 0-8194-5076-6 , ISSN: 0277-786XGoogle Scholar
  9. 9.
    Vaidyanathan, P.P., Akkarakaran, S.: A review of the theory and applications of principal component filter banks. Applied and Computational Harmonic Analysis (invited paper) 10(3), 254–289 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Chapa, J.O., Rao, R.M.: Algorithms for designing wavelets to match a specified signal. IEEE Trans. Signal Processing 48, 3395–3406 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Vaidyanathan, P.P.: Theory of optimal orthonormal subband coders. IEEE Trans. Signal Proc. SP. 46, 1528–1543 (1998)CrossRefGoogle Scholar
  12. 12.
    Moulin, P., Anitescu, M., Ramchandran, K.: Theory of rate-distortion-optimal, constrained filterbanks–Application to IIR and FIR biorthogonal designs. IEEE Trans. Signal Processing 48, 1120–1132 (2000)CrossRefGoogle Scholar
  13. 13.
    Yoo, H., Jeong, J.: A Unified Framework for Wavelet Transform Based on The Lifting Scheme. In: Proc. of IEEE International Conference on Image Processing ICIP 2001, Tessaloniki, Greece, October 7-10, pp. 793–795 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Oleksiy Pogrebnyak
    • 1
  • Pablo Manrique Ramírez
    • 1
  • Luis Pastor Sanchez Fernandez
    • 1
  • Roberto Sánchez Luna
    • 1
  1. 1.Instituto Politecnico Nacional, CIC-IPNColonia Nueva Industrial VallejoMexico D.F.

Personalised recommendations