Non-supervised Classification of 2D Color Images Using Kohonen Networks and a Novel Metric

  • Ricardo Pérez-Aguila
  • Pilar Gómez-Gil
  • Antonio Aguilera
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3773)


We describe the application of 1-Dimensional Kohonen Networks in the classification of color 2D images which has been evaluated in Popocatépetl Volcano’s images. The Popocatépetl, located in the limits of the State of Puebla in México, is active and under monitoring since 1997. We will consider one of the problems related with the question if our application of the Kohonen Network classifies according to the total intensity color of an image or well, if it classifies according to the connectivity, i.e. the topology, between the pixels that compose an image. In order to give arguments that support our hypothesis that our procedures share the classification according to the topology of the pixels in the images, we will present two approaches based a) in the evaluation of the classification given by the network when the pixels in the images are permuted; and,b) when an additional metric to the Euclidean distance is introduced.


Network Topology Weight Vector Training Image Image Classification Output Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Antonio, A., Menéndez, L., Gerardo, S., Pérez-Aguila, R.: Image Based Reasoning Applied to the Comparison of the Popocatépetl Volcano’s Fumaroles. In: Proceedings of the IX Ibero-American Workshops on Artificial Intelligence, Iberamia, November 22 - 23, National Institute of Astrophysics, Optics and Electronics (INAOE), Puebla, México, pp. 3–8 (2004) ISBN: 968-863-783-6Google Scholar
  2. 2.
    Antonio, A., Menéndez, L., Gerardo, S., Pérez-Aguila, R.: A Procedure for Comparing Color 2-Dimensional Images Through their Extrusions to the 5-Dimensional Colorspace. In: Proceedings of the 15th International Conference on Electronics, Communications, and Computers CONIELECOMP 2005, Puebla, México, February 28 to March 2, pp. 300–305. IEEE Computer Society, Los Alamitos (2005) ISBN: 0-7695-2283-1Google Scholar
  3. 3.
    CENAPRED (Centro Nacional de Prevención de Desastres), México. Web Site (April 2003),
  4. 4.
    Eric, D., Patrick, N.: Neural Networks. The Macmillan Press Ltd, Basingstoke (1992)Google Scholar
  5. 5.
    José, H., Victor, M.: Redes Neuronales Artificiales. Alfaomega, México (2000)Google Scholar
  6. 6.
    Pérez Aguila, R.: The Extreme Vertices Model in the 4D space and its Applications in the Visualization and Analysis of Multidimensional Data Under the Context of a Geographical Information System. Thesis for the Master’s Degree in Sciences. Universidad de las Américas - Puebla. Puebla, México (2003)Google Scholar
  7. 7.
    Ritter, H., Martinetz, T., Schulten, K.: Neural Computation and Self-Organizing Maps, An introduction. Addison-Wesley Publishing Company, Reading (1992)zbMATHGoogle Scholar
  8. 8.
    Zerubia, J., Yu, S., Kato, Z., Berthod, M.: Bayesian Image Classification Using Markov Random Fields. Image and Vision Computing 14, 285–295 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ricardo Pérez-Aguila
    • 1
  • Pilar Gómez-Gil
    • 1
  • Antonio Aguilera
    • 1
  1. 1.Departamento de Ingeniería en Sistemas Computacionales, Centro de Investigación en Tecnologías de Información y Automatización (CENTIA)Universidad de las Américas – Puebla (UDLAP), Ex-Hacienda Santa Catarina MártirCholulaMéxico

Personalised recommendations