Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

Iberoamerican Congress on Pattern Recognition

CIARP 2005: Progress in Pattern Recognition, Image Analysis and Applications pp 242–251Cite as

  1. Home
  2. Progress in Pattern Recognition, Image Analysis and Applications
  3. Conference paper
Automatic Extraction of DNA Profiles in Polyacrilamide Gel Electrophoresis Images

Automatic Extraction of DNA Profiles in Polyacrilamide Gel Electrophoresis Images

  • Francisco Silva-Mata18,
  • Isneri Talavera-Bustamante18,
  • Ricardo González-Gazapo18,
  • Noslén Hernández-González18,
  • Juan R. Palau-Infante18 &
  • …
  • Marta Santiesteban-Vidal19 
  • Conference paper
  • 1089 Accesses

Part of the Lecture Notes in Computer Science book series (LNIP,volume 3773)

Abstract

In this paper is presented a method for the automatic DNA spots classification and extraction of profiles associated in DNA polyacrilamide gel electrophoresis based on image processing. A software which implements this method was developed, composed by four modules: Digital image acquisition, image preprocessing, feature extraction and classification, and DNA profile extraction. The use of different types of algorithms as: C4.5 Decision Trees, Support Vector Machines and Leader Algorithm are needed to resolve all the tasks. The experimental results show that this method has a very nice computational behavior and effectiveness, and provide a very useful tool to decrease the time and increase the quality of the specialist responses.

Keywords

  • Support Vector Machine
  • Automatic Extraction
  • Profile Extraction
  • Sobel Edge Detector
  • Codebook Vector

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Chapter PDF

Download to read the full chapter text

References

  1. Gill, P., Urquhart, A., Millican, E., Oldroyd, N., Watson, S.: Criminal intelligence Databases and interpretation of STRs. Advances in Forensic Haemogenetics 6, 235–242 (1996)

    Google Scholar 

  2. Lander, E.S.: DNA fingerprinting: The NRC report, Science, vol.260, pp. 1221 (1993)

    Google Scholar 

  3. Lewontin, R.C., Hartl, D.L.: Population genetics in forensic DNA typing. Science 254, 1745–1750 (1991)

    CrossRef  Google Scholar 

  4. Weber, J., May, P.: Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44, 388–396 (1989)

    Google Scholar 

  5. Estrada, C.: Techniques for DNA analysis in forensic genetics (2001), http://www.ugr.es/~eianezbiotecnologia/forensetec.htm#1

  6. Shortley, G., Dudly, W.: Elements of Physics. B.E.E. In: Illumination and Photometry, ch. 24, 3rd edn., p. 506 (1966)

    Google Scholar 

  7. Kacmazmarek, B., Walczak, B., Jong, S., Vandeginste, B.G.M.: Preprocessing of 2-D gel electrophoresis images. Analytical Chemistry 75, 3631–3636 (2003)

    CrossRef  Google Scholar 

  8. Kacmazmarek, B., Walczak, B., Jong, S., Vandeginste, B.G.M.: Enhancement of images from 2-D gel electrophoresis. In: Proceedings 9th International Conference, CAC 2004, p. 171 (2004)

    Google Scholar 

  9. Stockham, T.G.: Image processing in the context of a Visual Model. Proc, IEEE 60(7), 828–842 (1972)

    CrossRef  Google Scholar 

  10. Short, J., Kittler, J., Messer, K.: A comparison of photometric normalization algorithms for face verification. In: Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition, FGR 2004 (2004)

    Google Scholar 

  11. Gonzalez, R., Woods, R.: Digital Image Processing using MATLAB, 2nd edn., pp. 385–387. Prentice Hall, Englewood Cliffs (2004)

    Google Scholar 

  12. Quinlan, R.J.: C4.5: Programs for Machine Learnig (Morgan Kaufmann Series in Machine Learning). Paperback- January 15 (1993)

    Google Scholar 

  13. Vapnik, V., Chervonenkis, A.: Theory of Pattern Recognition. Nauka, Moscow (1974)

    Google Scholar 

  14. Vapnik, V.: The nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  15. Burges, C.J.C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 2(2), 121–167 (1998)

    CrossRef  Google Scholar 

  16. Cristianini, Shawe-Taylor, J.: An introduction to Support Vector Machine. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  17. Scholkopf, C., Burges, J., Smola, A.: Advances in Kernel methods: Support Vector Learning. MIT Press, Cambridge (1999)

    Google Scholar 

  18. Xu, Z., Buckles, B.: DNA Sequence Classification by using Support Vector Machine. EECS, Tulane University

    Google Scholar 

  19. Hartigan, J.: Clustering Algorithm. John Wiley and Sons, New York (1975)

    Google Scholar 

  20. Alvarez, A., Ruiz, J., Sanchiz, M.: Typical Segment Descriptors: A new method for shape description and classification. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 512–520. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  21. Ching-Huei, T.: A.NET Implementation of Support Vector Machine.IESL MITVersion 0.8b, October 25 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Advanced Technologies Applications Center, MINBAS, Cuba

    Francisco Silva-Mata, Isneri Talavera-Bustamante, Ricardo González-Gazapo, Noslén Hernández-González & Juan R. Palau-Infante

  2. Central Criminologist Laboratory, Cuba

    Marta Santiesteban-Vidal

Authors
  1. Francisco Silva-Mata
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Isneri Talavera-Bustamante
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Ricardo González-Gazapo
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Noslén Hernández-González
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Juan R. Palau-Infante
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Marta Santiesteban-Vidal
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Dept. System Engineering and Automation, Universitat Politècnica de Catalunya (UPC) Barcelona, Spain

    Alberto Sanfeliu

  2. Pattern Recognition Group, ICIMAF, Havana, Cuba

    Manuel Lazo Cortés

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Silva-Mata, F., Talavera-Bustamante, I., González-Gazapo, R., Hernández-González, N., Palau-Infante, J.R., Santiesteban-Vidal, M. (2005). Automatic Extraction of DNA Profiles in Polyacrilamide Gel Electrophoresis Images. In: Sanfeliu, A., Cortés, M.L. (eds) Progress in Pattern Recognition, Image Analysis and Applications. CIARP 2005. Lecture Notes in Computer Science, vol 3773. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11578079_26

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/11578079_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29850-2

  • Online ISBN: 978-3-540-32242-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

  • The International Association for Pattern Recognition

    Published in cooperation with

    http://www.iapr.org/

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature