Neural Network Approach to Locate Motifs in Biosequences

  • Marcelino Campos
  • Damián López
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3773)


In this work we tackle the task of detecting biological motifs, i.e. subsequences with an associated function. This task is important in bioinformatics because it is related to the prediction of the behaviour of the whole protein. Artificial neural networks are used to, somewhat, translate the sequence of amino acids of the protein into a code that shows the subsequences where the presence of the studied motif is expected. The experimentation performed prove the good performance of our approach.


Hide Layer Input Pattern Neural Network Approach Coiled Coil False Positive Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Berger, B., Wilson, D.B., Wolf, E., Tonchev, T., Milla, M., Kim, P.S.: Predicting coiled coils by use of pairwise residue correlation. Proc. Natl. Acac. Sci. 92, 8259–8263 (1995)CrossRefGoogle Scholar
  2. 2.
    Chan, D.C., Kim, P.S.: Hiv entry and its inhibition. Cell 93, 681–684 (1998)CrossRefGoogle Scholar
  3. 3.
    Delorenzi, M., Speed, T.: An hmm model for coiled-coil domains and a comparison with pssm-based predictions. Bioinformatics 18(4), 617–625 (2002)CrossRefGoogle Scholar
  4. 4.
    PAIRCOIL implementation by the authors (1995),
  5. 5.
    Lopez, D., Cano, A., de Parga, M.V., Calles, B., Sempere, J.M., Perez, T., Campos, M., Ruiz, J., Garcia, P.: Motifs discovery by k-tss grammatical inference, Submitted and accepte at the 19th IJCAI 2005 (2005)Google Scholar
  6. 6.
    Lopez, D., Cano, A., de Parga, M.V., Calles, B., Sempere, J.M., Perez, T., Ruiz, J., Garcia, P.: Detection of functional motifs in biosequences: A grammatical inference approach. In: Messeguer, X., Valiente, G. (eds.) Proceedings of the 5th Annual Spanish Bioinformatics Conference, Univ. Politécnica de Catalunya, pp. 72–75 (2004) ISBN: 84-7653-863-4Google Scholar
  7. 7.
    Lupas, A., Van Dyke, M., Stock, J.: Predicting coiled coild from protein sequences. Science 252, 1162–1164 (1991)CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Rumelhart, D.E., Smolensky, P., McClelland, J.L., Hinton, G.E.: Schemata and sequential thought processes in pdp models. In: McClelland, J.L., Rumelhart, D.E., et al. (eds.) Parallel Distributed Processing: Psychological and Biological Models, vol. 2, p. 757. MIT Press, Cambridge (1986)Google Scholar
  10. 10.
    Singh, M., Berger, B., Kim, P.S.: Learncoil-vmf: Computational evidence for coiled-coil-like motifs in many viral membrane fusion proteins. J. Mol. Biol. 290, 1031–1041 (1999)CrossRefGoogle Scholar
  11. 11.
    Singh, M., Berger, B., Kim, P.S., Berger, J.M., Cochran, A.G.: Computational learning reveals coiled coil-like motifs in histidine kinase linker domains. Proc. Natl. Acac. Sci. 95, 2738–2743 (1998)CrossRefGoogle Scholar
  12. 12.
    Skehel, J.J., Wiley, D.C.: Coiled coils in both intracellular vesicle and viral membrane fusion. Cell 95, 871–874 (1998)CrossRefGoogle Scholar
  13. 13.
    Wolf, E., Kim, P.S., Berger, B.: Multicoil: a program for predicting two- and three-stranded coiled coils. Protein Science 6, 1179–1189 (1997)CrossRefGoogle Scholar
  14. 14.
    Zell, A., Mache, N., Huebner, R., Schmalzl, M., Sommer, T., Korb, T.: SNNS: Stuttgart neural network simulator. Technical report, Stuttgart (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Marcelino Campos
    • 1
  • Damián López
    • 1
  1. 1.Departamento de Sistemas Informáticos y ComputaciónUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations