Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

Iberoamerican Congress on Pattern Recognition

CIARP 2005: Progress in Pattern Recognition, Image Analysis and Applications pp 214–221Cite as

  1. Home
  2. Progress in Pattern Recognition, Image Analysis and Applications
  3. Conference paper
Neural Network Approach to Locate Motifs in Biosequences

Neural Network Approach to Locate Motifs in Biosequences

  • Marcelino Campos18 &
  • Damián López18 
  • Conference paper
  • 1565 Accesses

  • 2 Citations

Part of the Lecture Notes in Computer Science book series (LNIP,volume 3773)

Abstract

In this work we tackle the task of detecting biological motifs, i.e. subsequences with an associated function. This task is important in bioinformatics because it is related to the prediction of the behaviour of the whole protein. Artificial neural networks are used to, somewhat, translate the sequence of amino acids of the protein into a code that shows the subsequences where the presence of the studied motif is expected. The experimentation performed prove the good performance of our approach.

Keywords

  • Hide Layer
  • Input Pattern
  • Neural Network Approach
  • Coiled Coil
  • False Positive Detection

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Work supported by the Spanish CICYT under contract TIC2003-09319-C03-02.

Chapter PDF

Download to read the full chapter text

References

  1. Berger, B., Wilson, D.B., Wolf, E., Tonchev, T., Milla, M., Kim, P.S.: Predicting coiled coils by use of pairwise residue correlation. Proc. Natl. Acac. Sci. 92, 8259–8263 (1995)

    CrossRef  Google Scholar 

  2. Chan, D.C., Kim, P.S.: Hiv entry and its inhibition. Cell 93, 681–684 (1998)

    CrossRef  Google Scholar 

  3. Delorenzi, M., Speed, T.: An hmm model for coiled-coil domains and a comparison with pssm-based predictions. Bioinformatics 18(4), 617–625 (2002)

    CrossRef  Google Scholar 

  4. PAIRCOIL implementation by the authors (1995), http://theory.lcs.mit.edu/bab/computing

  5. Lopez, D., Cano, A., de Parga, M.V., Calles, B., Sempere, J.M., Perez, T., Campos, M., Ruiz, J., Garcia, P.: Motifs discovery by k-tss grammatical inference, Submitted and accepte at the 19th IJCAI 2005 (2005)

    Google Scholar 

  6. Lopez, D., Cano, A., de Parga, M.V., Calles, B., Sempere, J.M., Perez, T., Ruiz, J., Garcia, P.: Detection of functional motifs in biosequences: A grammatical inference approach. In: Messeguer, X., Valiente, G. (eds.) Proceedings of the 5th Annual Spanish Bioinformatics Conference, Univ. Politécnica de Catalunya, pp. 72–75 (2004) ISBN: 84-7653-863-4

    Google Scholar 

  7. Lupas, A., Van Dyke, M., Stock, J.: Predicting coiled coild from protein sequences. Science 252, 1162–1164 (1991)

    CrossRef  Google Scholar 

  8. Source Code NCOILS (1999), http://www.russell.embl.de/cgi-bin/coils-svr.pl

  9. Rumelhart, D.E., Smolensky, P., McClelland, J.L., Hinton, G.E.: Schemata and sequential thought processes in pdp models. In: McClelland, J.L., Rumelhart, D.E., et al. (eds.) Parallel Distributed Processing: Psychological and Biological Models, vol. 2, p. 757. MIT Press, Cambridge (1986)

    Google Scholar 

  10. Singh, M., Berger, B., Kim, P.S.: Learncoil-vmf: Computational evidence for coiled-coil-like motifs in many viral membrane fusion proteins. J. Mol. Biol. 290, 1031–1041 (1999)

    CrossRef  Google Scholar 

  11. Singh, M., Berger, B., Kim, P.S., Berger, J.M., Cochran, A.G.: Computational learning reveals coiled coil-like motifs in histidine kinase linker domains. Proc. Natl. Acac. Sci. 95, 2738–2743 (1998)

    CrossRef  Google Scholar 

  12. Skehel, J.J., Wiley, D.C.: Coiled coils in both intracellular vesicle and viral membrane fusion. Cell 95, 871–874 (1998)

    CrossRef  Google Scholar 

  13. Wolf, E., Kim, P.S., Berger, B.: Multicoil: a program for predicting two- and three-stranded coiled coils. Protein Science 6, 1179–1189 (1997)

    CrossRef  Google Scholar 

  14. Zell, A., Mache, N., Huebner, R., Schmalzl, M., Sommer, T., Korb, T.: SNNS: Stuttgart neural network simulator. Technical report, Stuttgart (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Departamento de Sistemas Informáticos y Computación, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain

    Marcelino Campos & Damián López

Authors
  1. Marcelino Campos
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Damián López
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Dept. System Engineering and Automation, Universitat Politècnica de Catalunya (UPC) Barcelona, Spain

    Alberto Sanfeliu

  2. Pattern Recognition Group, ICIMAF, Havana, Cuba

    Manuel Lazo Cortés

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Campos, M., López, D. (2005). Neural Network Approach to Locate Motifs in Biosequences. In: Sanfeliu, A., Cortés, M.L. (eds) Progress in Pattern Recognition, Image Analysis and Applications. CIARP 2005. Lecture Notes in Computer Science, vol 3773. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11578079_23

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/11578079_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29850-2

  • Online ISBN: 978-3-540-32242-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

  • The International Association for Pattern Recognition

    Published in cooperation with

    http://www.iapr.org/

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature