A Naive Solution to the One-Class Problem and Its Extension to Kernel Methods

  • Alberto Muñoz
  • Javier M. Moguerza
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3773)


In this work, the problem of estimating high density regions from univariate or multivariate data samples is studied. To be more precise, we estimate minimum volume sets whose probability is specified in advance. This problem arises in outlier detection and cluster analysis, and is strongly related to One-Class Support Vector Machines (SVM). In this paper we propose a new simpler method to solve this problem. We show its properties and introduce a new class of kernels, relating the proposed method to One-Class SVMs.


Class Support Vector Machine High Density Region True Mode Naive Algorithm Naive Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alpaydin, E., Kaynak, C.: Cascading Classifiers. Kybernetika 34(4), 369–374 (1998)Google Scholar
  2. 2.
    Devroye, L.: Recursive estimation of the mode of a multivariate density. The Canadian Journal of Statistics 7(2), 159–167 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Devroye, L., Krzyzak, A.: On the Hilbert kernel density estimate. Statistics and Probability Letters 44, 299–308 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Moguerza, J.M., Muñoz, A.: Solving the One-Class Problem using Neighbourhood Measures. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 680–688. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Moguerza, J.M., Muñoz, A., Martin-Merino, M.: Detecting the Number of Clusters Using a Support Vector Machine Approach. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 763–768. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Muñoz, A., Moguerza, J.M.: One-Class Support Vector Machines and density estimation: the precise relation. In: Sanfeliu, A., Martínez Trinidad, J.F., Carrasco Ochoa, J.A. (eds.) CIARP 2004. LNCS, vol. 3287, pp. 216–223. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Muñoz, A., Muruzabal, J.: Self-Organizing Maps for Outlier Detection. Neurocomputing 18, 33–60 (1998)CrossRefGoogle Scholar
  8. 8.
    Rätsch, G., Mika, S., Schölkopf, B., Müller, K.R.: Constructing Boosting Algorithms from SVMs: an Application to One-Class Classification. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(9), 1184–1199 (2002)CrossRefGoogle Scholar
  9. 9.
    Schölkopf, B., Burges, C., Vapnik, V.: Extracting Support Data for a given Task. In: Proc. of the First International Conference on Knowledge Discovery and Data Mining. AAAI Press, Menlo Park (1995)Google Scholar
  10. 10.
    Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the Support of a High Dimensional Distribution. Neural Computation 13(7), 1443–1471 (2001)zbMATHCrossRefGoogle Scholar
  11. 11.
    Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, Boca Raton (1990)Google Scholar
  12. 12.
    Tax, D.M.J., Duin, R.P.W.: Support Vector Domain Description. Pattern Recognition Letters 20, 1991–1999 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Alberto Muñoz
    • 1
  • Javier M. Moguerza
    • 2
  1. 1.University Carlos IIIGetafeSpain
  2. 2.University Rey Juan CarlosMóstolesSpain

Personalised recommendations