Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

Iberoamerican Congress on Pattern Recognition

CIARP 2005: Progress in Pattern Recognition, Image Analysis and Applications pp 181–192Cite as

  1. Home
  2. Progress in Pattern Recognition, Image Analysis and Applications
  3. Conference paper
Image Scale-Space from the Heat Kernel

Image Scale-Space from the Heat Kernel

  • Fan Zhang18 &
  • Edwin R. Hancock18 
  • Conference paper
  • 1149 Accesses

  • 4 Citations

Part of the Lecture Notes in Computer Science book series (LNIP,volume 3773)

Abstract

In this paper, we show how the heat-kernel can be used to construct a scale-space for image smoothing and edge detection. We commence from an affinity weight matrix computed by exponentiating the difference in pixel grey-scale and distance. From the weight matrix, we compute the graph Laplacian. Information flow across this weighted graph-structure with time is captured by the heat-equation, and the solution, i.e. the heat kernel, is found by exponentiating the Laplacian eigen-system with time. Our scale-space is constructed by varying the time parameter of the heat-kernel. The larger the time the greater the the amount of information flow across the graph. The method has the effect of smoothing within regions, but does not blur region boundaries. Moreover, the boundaries do not move with time and this overcomes one of the problems with Gaussian scale-space. We illustrate the effectiveness of the method for image smoothing and edge detection.

Keywords

  • Heat Kernel
  • Coarse Scale
  • Laplacian Matrix
  • Discrete Image
  • Degree Matrix

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Chapter PDF

Download to read the full chapter text

References

  1. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. and Machine Intell. 8(6), 679–698 (1986)

    CrossRef  Google Scholar 

  2. Chung, F.R.K., Yau, S.-T.: Discrete green’s functions. J. Combin. Theory Ser., 191–214 (2000)

    Google Scholar 

  3. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans. Pattern Anal. and Machine Intell. 6(6), 721–741 (1984)

    CrossRef  MATH  Google Scholar 

  4. Gidas, B.: A renormalization group approach to image processing problems. IEEE Trans. Pattern Anal. and Machine Intell. 11(2), 164–180 (1989)

    CrossRef  MATH  Google Scholar 

  5. Golub, G.H., Van Loan, C.F.: Matrix Computations. John Hopkins Press, Baltimore (1989)

    MATH  Google Scholar 

  6. Hummel, R.: The scale-space formulation of pyramid data structures. In: Uhr, L. (ed.) Parallel Computer Vision. Academic Press, London (1987)

    Google Scholar 

  7. Babaud, J., Witkin, A., Baudin, M., Duda, R.: Uniqueness of the gaussian kernel for scale-space filtering. IEEE Trans. Pattern Anal. and Machine Intell. 8(1), 26–33 (1986)

    CrossRef  MATH  Google Scholar 

  8. Koenderink, J.: The structure of images. Biological Cybernetics 50, 363–370 (1984)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Kondor, R., Lafferty, J.: Diffusion kernels on graphs and other discrete structures. In: 19th Intl. Conf. on Machine Learning (ICML) [ICM 2002] (2002)

    Google Scholar 

  10. Lozano, M., Escolano, F.: A significant improvement of softassign with diffusion kernels. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 76–84. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  11. Meila, M., Shi, J.: A random walks view of spectral segmentation. In: Proceedings of AI and Statistics, AISTATS (2001)

    Google Scholar 

  12. Perona, P., Malik, J.: Scale-space and edge dectection using anisotropic diffusion. IEEE Trans. Pattern Anal. and Machine Intell. 12(7), 629–639 (1990)

    CrossRef  Google Scholar 

  13. Witkin, A.P.: Scale-space filtering. In: 8th Int. Joint Conf. on Artificial Intelligence, Karlsruhe, Germany, pp. 1019–1021 (1983)

    Google Scholar 

  14. Scholkopf, M., Smola, A.: Learning with kernels. MIT Press, Cambridge (2001)

    Google Scholar 

  15. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    CrossRef  Google Scholar 

  16. Wilson, R., Spann, M.: Finite prolate spheroidal sequences and their application ii: Image feature description and segmentation. IEEE Trans. Pattern Anal. and Machine Intell. 10(2), 193–203 (1988)

    CrossRef  Google Scholar 

  17. Yuille, A., Poggio, T.: Scaling theorems for zero crossings. IEEE Trans. Pattern Anal. and Machine Intell. 8(1), 15–25 (1986)

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Computer Science, University of York, York, YO10 5DD, UK

    Fan Zhang & Edwin R. Hancock

Authors
  1. Fan Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Edwin R. Hancock
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Dept. System Engineering and Automation, Universitat Politècnica de Catalunya (UPC) Barcelona, Spain

    Alberto Sanfeliu

  2. Pattern Recognition Group, ICIMAF, Havana, Cuba

    Manuel Lazo Cortés

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, F., Hancock, E.R. (2005). Image Scale-Space from the Heat Kernel. In: Sanfeliu, A., Cortés, M.L. (eds) Progress in Pattern Recognition, Image Analysis and Applications. CIARP 2005. Lecture Notes in Computer Science, vol 3773. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11578079_20

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/11578079_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29850-2

  • Online ISBN: 978-3-540-32242-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

  • The International Association for Pattern Recognition

    Published in cooperation with

    http://www.iapr.org/

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature