Advertisement

Image Scale-Space from the Heat Kernel

  • Fan Zhang
  • Edwin R. Hancock
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3773)

Abstract

In this paper, we show how the heat-kernel can be used to construct a scale-space for image smoothing and edge detection. We commence from an affinity weight matrix computed by exponentiating the difference in pixel grey-scale and distance. From the weight matrix, we compute the graph Laplacian. Information flow across this weighted graph-structure with time is captured by the heat-equation, and the solution, i.e. the heat kernel, is found by exponentiating the Laplacian eigen-system with time. Our scale-space is constructed by varying the time parameter of the heat-kernel. The larger the time the greater the the amount of information flow across the graph. The method has the effect of smoothing within regions, but does not blur region boundaries. Moreover, the boundaries do not move with time and this overcomes one of the problems with Gaussian scale-space. We illustrate the effectiveness of the method for image smoothing and edge detection.

Keywords

Heat Kernel Coarse Scale Laplacian Matrix Discrete Image Degree Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. and Machine Intell. 8(6), 679–698 (1986)CrossRefGoogle Scholar
  2. 2.
    Chung, F.R.K., Yau, S.-T.: Discrete green’s functions. J. Combin. Theory Ser., 191–214 (2000)Google Scholar
  3. 3.
    Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans. Pattern Anal. and Machine Intell. 6(6), 721–741 (1984)zbMATHCrossRefGoogle Scholar
  4. 4.
    Gidas, B.: A renormalization group approach to image processing problems. IEEE Trans. Pattern Anal. and Machine Intell. 11(2), 164–180 (1989)zbMATHCrossRefGoogle Scholar
  5. 5.
    Golub, G.H., Van Loan, C.F.: Matrix Computations. John Hopkins Press, Baltimore (1989)zbMATHGoogle Scholar
  6. 6.
    Hummel, R.: The scale-space formulation of pyramid data structures. In: Uhr, L. (ed.) Parallel Computer Vision. Academic Press, London (1987)Google Scholar
  7. 7.
    Babaud, J., Witkin, A., Baudin, M., Duda, R.: Uniqueness of the gaussian kernel for scale-space filtering. IEEE Trans. Pattern Anal. and Machine Intell. 8(1), 26–33 (1986)zbMATHCrossRefGoogle Scholar
  8. 8.
    Koenderink, J.: The structure of images. Biological Cybernetics 50, 363–370 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kondor, R., Lafferty, J.: Diffusion kernels on graphs and other discrete structures. In: 19th Intl. Conf. on Machine Learning (ICML) [ICM 2002] (2002)Google Scholar
  10. 10.
    Lozano, M., Escolano, F.: A significant improvement of softassign with diffusion kernels. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 76–84. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Meila, M., Shi, J.: A random walks view of spectral segmentation. In: Proceedings of AI and Statistics, AISTATS (2001)Google Scholar
  12. 12.
    Perona, P., Malik, J.: Scale-space and edge dectection using anisotropic diffusion. IEEE Trans. Pattern Anal. and Machine Intell. 12(7), 629–639 (1990)CrossRefGoogle Scholar
  13. 13.
    Witkin, A.P.: Scale-space filtering. In: 8th Int. Joint Conf. on Artificial Intelligence, Karlsruhe, Germany, pp. 1019–1021 (1983)Google Scholar
  14. 14.
    Scholkopf, M., Smola, A.: Learning with kernels. MIT Press, Cambridge (2001)Google Scholar
  15. 15.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)CrossRefGoogle Scholar
  16. 16.
    Wilson, R., Spann, M.: Finite prolate spheroidal sequences and their application ii: Image feature description and segmentation. IEEE Trans. Pattern Anal. and Machine Intell. 10(2), 193–203 (1988)CrossRefGoogle Scholar
  17. 17.
    Yuille, A., Poggio, T.: Scaling theorems for zero crossings. IEEE Trans. Pattern Anal. and Machine Intell. 8(1), 15–25 (1986)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Fan Zhang
    • 1
  • Edwin R. Hancock
    • 1
  1. 1.Department of Computer ScienceUniversity of YorkYorkUK

Personalised recommendations