Surface Grading Using Soft Colour-Texture Descriptors

  • Fernando López
  • José-Miguel Valiente
  • José-Manuel Prats
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3773)

Abstract

This paper presents a new approach to the question of surface grading based on soft colour-texture descriptors and well known classifiers. These descriptors come from global image statistics computed in perceptually uniform colour spaces (CIE Lab or CIE Luv). The method has been extracted and validated using a statistical procedure based on experimental design and logistic regression. The method is not a new theoretical contribution, but we have found and demonstrate that a simple set of global statistics softly describing colour and texture properties, together with well-known classifiers, are powerful enough to meet stringent factory requirements for real-time and performance. These requirements are on-line inspection capability and 95% surface grading accuracy. The approach is also compared with two other methods in the surface grading literature; colour histograms [1] and centile-LBP [8]. This paper is an extension and in-depth development of ideas reported in a previous work [11].

Keywords

Colour Space Good Combination Local Binary Pattern Ceramic Tile Local Binary Pattern Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Boukouvalas, C., Kittler, J., Marik, R., Petrou, M.: Color grading of randomly textured ceramic tiles using color histograms. IEEE Trans. Industrial Electronics 46(1), 219–226 (1999)CrossRefGoogle Scholar
  2. 2.
    Boukouvalas, C., Petrou, M.: Perceptual correction for colour grading using sensor transformations and metameric Data. Machine Vision and Applications 11, 96–104 (1998)CrossRefGoogle Scholar
  3. 3.
    Boukouvalas, C., Petrou, M.: Perceptual correction for colour grading of random textures. Machine Vision and Appl. 12, 129–136 (2000)CrossRefGoogle Scholar
  4. 4.
    Baldrich, R., Vanrell, M., Villanueva, J.J.: Texture-color features for tile classification. In: EUROPTO/SPIE Conf. on Color and Polarisation Techniques in Indust. Inspection, Germany (1999)Google Scholar
  5. 5.
    Lumbreras, F., Serrat, J., Baldrich, R., Vanrell, M., Villanueva, J.J.: Color texture recognition through multiresolution features. In: Int. Conf. on Quality Control by Artificial Vision, vol. 1, pp. 114–121 (2001)Google Scholar
  6. 6.
    Peñaranda, J.A., Briones, L., Florez, J.: Color machine vision system for process control in ceramics industry. SPIE 3101, 182–192 (1997)CrossRefGoogle Scholar
  7. 7.
    Kauppinen, H.: Development of a color machine vision method for wood surface inspection. Phd Thesis, Oulu University (1999)Google Scholar
  8. 8.
    Kyllönen, J., Pietikäinen, M.: Visual inspection of parquet slabs by combining color and texture. In: Proc. IAPR Workshop on Machine Vision Appl., Japan (2000)Google Scholar
  9. 9.
    Lebrun, V., Macaire, L.: Aspect inspection of marble tiles by color line-scan camera. In: Int. Conf. on Quality Control by Artificial Vision, France (2001)Google Scholar
  10. 10.
    Kukkonen, S., Kvinen, H., Parkkinen, J.: Color Features for Quality Control in Ceramic Tile Industry. Optical Engineering 40(2), 170–177 (2001)CrossRefGoogle Scholar
  11. 11.
    López, F., Valiente, J.M., Baldrich, R., Vanrell, M.: Fast surface grading using color statistics in the CIE Lab space. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3523, pp. 666–673. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    López, F., Valiente, J.M., Andreu, G.: A study of real-time compliance and parallelization for the purpose of surface grading. XVI Jornadas de Paralelismo, I Congreso Español de Informática (2005)Google Scholar
  13. 13.
    Montgomery, D.C.: Design and analysis of experiments, 4th edn. John Wiley and Sons, Inc., New York (1997)MATHGoogle Scholar
  14. 14.
    Christensen, R.: Log-linear models and logistic regression, 2nd edn. Springer, New York (1997)MATHGoogle Scholar
  15. 15.
    Gonzalez, R.C., Wintz, P.: Digital image processing, 2nd edn. Addison-Wesley, Reading (1987)Google Scholar
  16. 16.
    Duda, R.O., Hart, P.E.: Pattern classification and scene analysis. John Wiley and Sons, New York (1973)MATHGoogle Scholar
  17. 17.
    Wyszecki, G., Stiles, W.S.: Color sciencie: concepts and methods, quantitative data and formulae, 2nd edn. Wiley, New York (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Fernando López
    • 1
  • José-Miguel Valiente
    • 1
  • José-Manuel Prats
    • 1
  1. 1.Universidad Politécnica de ValenciaValenciaSpain

Personalised recommendations