Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

Iberoamerican Congress on Pattern Recognition

CIARP 2005: Progress in Pattern Recognition, Image Analysis and Applications pp 138–145Cite as

  1. Home
  2. Progress in Pattern Recognition, Image Analysis and Applications
  3. Conference paper
Nonlinear Civil Structures Identification Using a Polynomial Artificial Neural Network

Nonlinear Civil Structures Identification Using a Polynomial Artificial Neural Network

  • Francisco J. Rivero-Angeles18,
  • Eduardo Gomez-Ramirez19 &
  • Ruben Garrido18 
  • Conference paper
  • 1088 Accesses

  • 1 Citations

Part of the Lecture Notes in Computer Science book series (LNIP,volume 3773)

Abstract

Civil structures could undergo hysteresis cycles due to cracking or yielding when subjected to severe earthquake motions or even high wind. System identification techniques have been used in the past years to assess civil structures under lateral loads. The present research makes use of a polynomial artificial neural network to identify and predict, on-line, the behavior of such nonlinear structures. Simulations are carried out using the Loma Prieta and the Mexico City seismic records on two hysteretic models. Afterwards, two real seismic records acquired on a 24-story concrete building in Mexico City are used to test the proposed algorithm. Encouraging results are obtained: fast identification of the weights and fair prediction of the output acceleration.

Keywords

  • Mexico City
  • Structural Health Monitoring
  • Seismic Record
  • Civil Structure
  • Hysteretic Model

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Chapter PDF

Download to read the full chapter text

References

  1. Box, G.E.P., Jenkin, G.M.: Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco (1970)

    MATH  Google Scholar 

  2. Chen, S., Billings, A.: Representations of Nonlinear Systems: the NARMAX model. Int. J. of Control 49(3) (1989)

    Google Scholar 

  3. Gomez-Ramirez, E., Poznyak, A., Gonzalez-Yunes, A., Avila-Alvarez, M.: Adaptive Architecture of Polynomial Artificial Neural Network to Forecast Nonlinear Time Series. In: Congress on Evolutionary Computation, CEC 1999, Mayflower, Washington, D.C., USA, July 6 - 9 (1999)

    Google Scholar 

  4. Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T.T., Spencer, B.F., Yao, J.T.P.: Structural Control: Past, Present and Future. Journal of Engineering Mechanics 123(9) (September 1997)

    Google Scholar 

  5. Humar, J.L.: Dynamics of Structures. A. A. Balkema Publishers, Rotterdam (2001)

    Google Scholar 

  6. Korenberg, M., Billings, S.A., Liu, Y.P., McIlroy, P.J.: Orthogonal Parameter Estimation Algorithm for Non-Linear Stochastic Systems. International Journal of Control 48(1) (1988)

    Google Scholar 

  7. Kosmatopoulos, E.B., Smyth, A.W., Masri, S.F., Chassiakos, A.G.: Robust Adaptive Neural Estimation of Restoring Forces in Nonlinear Structures. Transactions of the ASME, Journal of Applied Mechanics 68 (November 2001)

    Google Scholar 

  8. Loh, C.H., Chung, S.T.: A Three-Stage Identification Approach for Hysteretic Systems. Earthquake Engineering and Structural Dynamics 22, 129–150 (1993)

    CrossRef  Google Scholar 

  9. Martinez-Garcia, J.C., Gomez-Gonzalez, B., Martinez-Guerra, R., Rivero-Angeles, F.J.: Parameter Identification of Civil Structures Using Partial Seismic Instrumentation. In: 5th Asian Control Conference, ASCC, Melbourne, Australia, July 20-23 (2004)

    Google Scholar 

  10. Masri, S.F., Miller, R.K., Saud, A.F., Caughey, T.K.: Identification of Nonlinear Vibrating Structures: Part I - Formulation. Transactions of the ASME, J. of Applied Mechanics 57 (December 1987)

    Google Scholar 

  11. Masri, S.F., Chassiakos, A.G., Caughey, T.K.: Structure-unknown non-linear dynamic systems: identification through neural networks. Smart Mater. Struct. 1, 45–56 (1992)

    CrossRef  Google Scholar 

  12. Masri, S.F., Chassiakos, A.G., Caughey, T.K.: Identification of nonlinear dynamic systems using neural networks. J. of Applied Mechanics 60, 123–133 (1993)

    CrossRef  Google Scholar 

  13. Mohammad, K.S., Worden, K., Tomlinson, G.R.: Direct Parameter Estimation for Linear and Non-linear Structures. Journal of Sound and Vibration 152(3) (1992)

    Google Scholar 

  14. Sugeno, M.: Industrial Applications of Fuzzy Control. Elsevier Science Pub. Co., Amsterdam (1985)

    Google Scholar 

  15. Wen, Y.K.: Method for Random Vibration of Hysteretic Systems. Journal of Engineering Mechanics, ASCE 102(2), 249–263 (1976)

    Google Scholar 

  16. Yar, M., Hammond, J.K.: Parameter Estimation for Hysteretic Systems. J. of Sound and Vibration 117(1) (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Departamento de Control Automatico, Centro de Investigacion y de Estudios Avanzados del IPN, CINVESTAV, Av. Instituto Politecnico Nacional #2508, Col. Zacatenco, A.P. 14-740, Mexico, D.F., 07360, Mexico

    Francisco J. Rivero-Angeles & Ruben Garrido

  2. Laboratorio de Investigacion y Desarrollo, de Tecnologia Avanzada, Universidad La Salle, Benjamin Franklin #47, Col. Condesa, Mexico, D.F., 06140, Mexico

    Eduardo Gomez-Ramirez

Authors
  1. Francisco J. Rivero-Angeles
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Eduardo Gomez-Ramirez
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Ruben Garrido
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Dept. System Engineering and Automation, Universitat Politècnica de Catalunya (UPC) Barcelona, Spain

    Alberto Sanfeliu

  2. Pattern Recognition Group, ICIMAF, Havana, Cuba

    Manuel Lazo Cortés

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rivero-Angeles, F.J., Gomez-Ramirez, E., Garrido, R. (2005). Nonlinear Civil Structures Identification Using a Polynomial Artificial Neural Network. In: Sanfeliu, A., Cortés, M.L. (eds) Progress in Pattern Recognition, Image Analysis and Applications. CIARP 2005. Lecture Notes in Computer Science, vol 3773. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11578079_15

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/11578079_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29850-2

  • Online ISBN: 978-3-540-32242-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

  • The International Association for Pattern Recognition

    Published in cooperation with

    http://www.iapr.org/

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature