Analysis of Directional Reflectance and Surface Orientation Using Fresnel Theory

  • Gary A. Atkinson
  • Edwin R. Hancock
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3773)


Polarization of light caused by reflection from dielectric surfaces has been widely studied in computer vision. This paper presents an analysis of the accuracy of a technique that has been developed to acquire surface orientation from the polarization state of diffusely reflected light. This method employs a digital camera and a rotating linear polarizer. The paper also explores the possibility of linking polarization vision with shading information by means of a computationally efficient BRDF estimation algorithm.


Zenith Angle Azimuth Angle Shape Recovery Surface Orientation Normal Paper 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Atkinson, G.A., Hancock, E.R.: Recovery of Surface Orientation from Diffuse Polarization. To appear: Trans. Image Proc. Google Scholar
  2. 2.
    Clark, J., Trucco, E., Wolff, L.B.: Using light polarization in laser scanning. Image and Vision Computing 15, 107–117 (1997)CrossRefGoogle Scholar
  3. 3.
    Drbohlav, O., Šára, R.: Unambiguous determination of shape from photometric stereo with unknown light sources. In: Proc. of ICCV, pp. 581–586 (2001)Google Scholar
  4. 4.
    Drbohlav, O., Šára, R.: Specularities reduce ambiguity of uncalibrated photometric stereo. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 46–62. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Hecht, E.: Optics, 3rd edn. Addison Wesley, Longman (1998)Google Scholar
  6. 6.
    Miyazaki, D., Kagesawa, M., Ikeuchi, K.: Transparent surface modelling from a pair of polarization images. IEEE Trans. Patt. Anal. Mach. Intell. 26, 73–82 (2004)CrossRefGoogle Scholar
  7. 7.
    Miyazaki, D., Saito, M., Sato, Y., Ikeuchi, K.: Determining surface orientations of transparent objects based on polarization degrees in visible and infrared wavelengths. J. Opt. Soc. Am. A 19, 687–694 (2002)CrossRefGoogle Scholar
  8. 8.
    Rahmann, S., Canterakis, N.: Reconstruction of specular surfaces using polarization imaging. In: Proc. CVPR, pp. 149–155 (2001)Google Scholar
  9. 9.
    Robles-Kelly, A., Hancock, E.R.: Estimating the surface radiance function from single images. To appear: Graphical Models Google Scholar
  10. 10.
    Umeyama, S.: Separation of diffuse and specular components of surface reflection by use of polarization and statistical analysis of images. IEEE Trans. Patt. Anal. Mach. Intell. 26, 639–647 (2004)CrossRefGoogle Scholar
  11. 11.
    Wolff, L.B., Boult, T.E.: Constraining object features using a polarization reflectance model. IEEE Trans. Pattern Anal. Mach. Intell. 13, 635–657 (1991)CrossRefGoogle Scholar
  12. 12.
    Wolff, L.B., Nayar, S.K., Oren, M.: Improved diffuse reflection models for computer vision. Intl. J. Computer Vision 30, 55–71 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Gary A. Atkinson
    • 1
  • Edwin R. Hancock
    • 1
  1. 1.Department of Computer ScienceUniversity of YorkYorkUK

Personalised recommendations