Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

Iberoamerican Congress on Pattern Recognition

CIARP 2005: Progress in Pattern Recognition, Image Analysis and Applications pp 1005–1014Cite as

  1. Home
  2. Progress in Pattern Recognition, Image Analysis and Applications
  3. Conference paper
Automatic Evaluation of Document Binarization Results

Automatic Evaluation of Document Binarization Results

  • E. Badekas18 &
  • N. Papamarkos18 
  • Conference paper
  • 1118 Accesses

  • 19 Citations

Part of the Lecture Notes in Computer Science book series (LNIP,volume 3773)

Abstract

Most of the document binarization techniques have many parameters that can initially be specified. Usually, subjective document binarization evaluation, employs human observes for the estimation of the best parameter values of the techniques. Thus, the selection of the best values for these parameters is crucial for the final binarization result. However, there is not any set of parameters that guarantees the best binarization result for all document images. It is important, the estimation of the best values to be adaptive for each one of the processing images. This paper proposes a new method which permits the estimation of the best parameter values for each one of the document binarization techniques and also the estimation of the best document binarization result of all techniques. In this way, document binarization techniques can be compared and evaluated using, for each one of them, the best parameter values for every document image.

Keywords

  • Binary Image
  • Receiver Operating Characteristic
  • Binarization Result
  • Document Image
  • Foreground Pixel

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This paper was partially supported by the project Archimedes of TEI Serron.

Chapter PDF

Download to read the full chapter text

References

  1. Yitzhaky, Y., Peli, E.: A Method for Objective Edge Detection Evaluation and Detector Parameter Selection. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(8), 1027–1033 (2003)

    CrossRef  Google Scholar 

  2. Otsu, N.: A thresholding selection method from gray-level histogram. IEEE Trans. Systems Man Cybernet SMC-8, 62–66 (1978)

    CrossRef  MathSciNet  Google Scholar 

  3. Chi, Z., Yan, H., Pham, T.: Fuzzy Algorithms: With Applications to Image Processing and Pattern Recognition. World Scientific Publishing, Singapore (1996)

    MATH  Google Scholar 

  4. Niblack, W.: An Introduction to Digital Image Processing, pp. 115–116. Prentice Hall, Englewood Cliffs (1986)

    Google Scholar 

  5. Sauvola, J., Seppanen, T., Haapakoski, S., Pietikainen, M.: Adaptive Document Binarization, ICDAR Ulm Germany, 147-152 (1997)

    Google Scholar 

  6. Sauvola, J., Pietikainen, M.: Adaptive Document Image Binarization. Pattern Recognition 33, 225–236 (2000)

    CrossRef  Google Scholar 

  7. Bernsen, J.: Dynamic thresholding of grey-level images. In: Proc. Eighth Int. Conf. Pattern Recognition, Paris, pp. 1251–1255 (1986)

    Google Scholar 

  8. Kamel, M., Zhao, A.: Extraction of binary character / graphics images from gray-scale document images. CVGIP: Graphical Models Image Process 55(3), 203–217 (1993)

    Google Scholar 

  9. Yang, Y., Yan, H.: An adaptive logical method for binarization of degraded document images. Pattern Recognition 33, 787–807 (2000)

    CrossRef  Google Scholar 

  10. White, J.M., Rohrer, G.D.: Image segmentation for optical character recognition and other applications requiring character image extraction. IBM J. Res. Dev. 27(4), 400–411 (1983)

    CrossRef  Google Scholar 

  11. Trier, O.D., Taxt, T.: Improvement of ‘Integrated Function Algorithm’ for binarization of document images. Pattern Recognition Letters 16, 277–283 (1995)

    CrossRef  Google Scholar 

  12. Badekas, E., Papamarkos, N.: A system for document binarization. In: 3rd International Symposium on Image and Signal Processing and Analysis ISPA 2003, Rome, Italy (2003)

    Google Scholar 

  13. Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging 13(1), 146–165 (2004)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Image Processing and Multimedia Laboratory, Department of Electrical & Computer Engineering, Democritus University of Thrace, 67100, Xanthi, Greece

    E. Badekas & N. Papamarkos

Authors
  1. E. Badekas
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. N. Papamarkos
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Dept. System Engineering and Automation, Universitat Politècnica de Catalunya (UPC) Barcelona, Spain

    Alberto Sanfeliu

  2. Pattern Recognition Group, ICIMAF, Havana, Cuba

    Manuel Lazo Cortés

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Badekas, E., Papamarkos, N. (2005). Automatic Evaluation of Document Binarization Results. In: Sanfeliu, A., Cortés, M.L. (eds) Progress in Pattern Recognition, Image Analysis and Applications. CIARP 2005. Lecture Notes in Computer Science, vol 3773. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11578079_103

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/11578079_103

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29850-2

  • Online ISBN: 978-3-540-32242-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

  • The International Association for Pattern Recognition

    Published in cooperation with

    http://www.iapr.org/

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature