CT and PET Registration Using Deformations Incorporating Tumor-Based Constraints

  • Antonio Moreno
  • Gaspar Delso
  • Oscar Camara
  • Isabelle Bloch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3773)

Abstract

Registration of CT and PET thoracic images has to cope with deformations of the lungs during breathing. Possible tumors in the lungs usually do not follow the same deformations, and this should be taken into account in the registration procedure. We show in this paper how to introduce tumor-based constraints into a non-linear registration of thoracic CT and PET images. Tumors are segmented by means of a semi-automatic procedure and they are used to guarantee relevant deformations near the pathology. Results on synthetic and real data demonstrate a significant improvement of the combination of anatomical and functional images for diagnosis and for oncology applications.

Keywords

Positron Emission Tomography Compute Tomography Image Positron Emission Tomography Image Source Image Target Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Camara-Rey, O.: Non-Linear Registration of Thoracic and Abdominal CT and PET Images: Methodology Study and Application in Clinical Routine, PhD dissertation, ENST (ENST 2003 E 043), Paris, France (December 2003)Google Scholar
  2. 2.
    Delso, G.: Registro Elástico de Imágenes Médicas Multimodales. Aplicación en Oncología, PhD dissertation, Centre de Recerca en Enginyeria Biomèdica, Universitat Politècnica de Catalunya, Barcelona, Spain (October 2003)Google Scholar
  3. 3.
    Wagner Jr., H.N., MD: Creating Lifetime Images of Health and Disease. 2004 SNM Highlights Lecture, pp. 11N-41N and PET and PET/CT: Progress, Rewards, and Challenges, The Journal of Nuclear Medicine 44(7), 10–14 (2003)Google Scholar
  4. 4.
    Adams, R., Bischof, L.: Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence 16, 641–647 (1994)CrossRefGoogle Scholar
  5. 5.
    Blaffert, T., Wiemker, R.: Comparison of different follow-up lung registration methods with and without segmentation. In: Medical Imaging 2004, Proceedings of SPIE, vol. 5370, pp. 1701–1708.Google Scholar
  6. 6.
    Huesman, R.H., Klein, G.J., Kimdon, J.A., Kuo, C., Majumdar, S.: Deformable Registration of Multimodal Data Including Rigid Structures. IEEE Transactions on Nuclear Science 50(3) (June 2003)Google Scholar
  7. 7.
    Little, J.A., Hill, D.L.G., Hawkes, D.J.: Deformations Incorporating Rigid Structures. Computer Vision and Image Understanding 66(2), 223–232 (1997)CrossRefGoogle Scholar
  8. 8.
    Castellanos, N.P., Angel, P.L.D., Medina, V.: Nonrigid medical image registration technique as a composition of local warpings. Pattern Recognition 37, 2141–2154 (2004)CrossRefGoogle Scholar
  9. 9.
    Rohlfing, T., Maurer, C.R.: Intensity-Based Non-rigid Registration Using Adaptive Multilevel Free-Form Deformation with an Incompressibility Constraint. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 111–119. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Loeckx, D., Maes, F., Vandermeulen, D., Suetens, P.: Nonrigid Image Registration Using Free-Form Deformations with Local Rigidity Constraint. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 639–646. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Wiemker, R., Rohr, K., Binder, L., Sprengel, R., Stiehl, H.S.: Application of elastic registration to imagery from airbone scanners. In: Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS 1996), pp. 949–954 (1996)Google Scholar
  12. 12.
    Schnabel, J.A., Tanner, C., Castellano-Smith, A.D., Degenhard, A., Leach, M.O., Hose, D.R., Hill, D.L.G., Hawkes, D.J.: Validation of Nonrigid Image Registration Using Finite-Element Methods: Application to Breast MR Images. IEEE Transactions on Medical Imaging 22(2) (February 2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Antonio Moreno
    • 1
    • 2
  • Gaspar Delso
    • 3
  • Oscar Camara
    • 4
  • Isabelle Bloch
    • 1
  1. 1.Ecole Nationale Supérieure des TélécommunicationsTSI Department, CNRS UMR 5141ParisFrance
  2. 2.SegamiParisFrance
  3. 3.Philips Medical SystemsSuresnesFrance
  4. 4.Center for Medical Image Computing, Department of Medical PhysicsUniversity College LondonLondonUK

Personalised recommendations