Advertisement

Towards Peta-Bit Photonic Networks

Conference paper
  • 544 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3758)

Abstract

With a tremendous growth in the Internet traffic, next generation network have been requiring a large increase in transmission capacity, switching-system high-throughput and high-performance optical networking. Wavelength Division Multiplexing (WDM) technology has been increased to the number of wavelengths per fiber hundreds or more with each wavelength operating at the rates of 10Gbps or higher. Thus, the use of all-optical (photonic) networks based on the WDM technology is considered promising to provide peta-bit bandwidth for next generation Internet. To enable the future peta-bit photonic networks, deliberate studies are deserved for some key techniques, such as the ultra-high speed all-optical switching, high performance routing and wavelength assignment (RWA), efficient restoration and protection, etc. This paper provides you with the knowledge about dense WDM networks, high-speed optical switching architectures, high performance routing and wavelength assignment, efficient restoration, as well as prospective vision of future photonic Internet.

Keywords

Wavelength Division Multiplex Backup Path Optical Burst Switching Wavelength Assignment Primary Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Horiguch, S., Ochiimizu, K., Katayama, T.: The Proceeding of the International Symposium on Towards Peta-Bit Ultra-Networks, pp. 1–188. A&I Ltd (2003) ISBN4-9900330-3-5Google Scholar
  2. 2.
    Karalopulos, S.V.: DWDM: Networks, Devices, and Technology. Wiley Iterscience and IEEE Press, Hoboken (2003)Google Scholar
  3. 3.
    Karalopulos, S.V.: Elastic Bandwidth. IEEE Circuits ans Devices 18(1), 8–13 (2002)CrossRefGoogle Scholar
  4. 4.
    Khandker, M.R., Horiguchi, S.: 3x3 Wide Sense Non-blocking Optical Switch for WDM Self-healing Ring Networks. In: Proc. Int’l Conf. On Electrical and Computer Engineering, Icece, pp. 222–225 (2001)Google Scholar
  5. 5.
    Qiao, C., Yoo, M.: Optical burst switching (OBS): A new paradigm for an optical internet. Journal of high speed networks (JHSN) on WDM Networks 8(1) (1999)Google Scholar
  6. 6.
    Chen, Y., Qiao, C., Yu, X.: An optical burst switching: a new area in optical networking research. IEEE Network 18, 16–23 (2004)CrossRefGoogle Scholar
  7. 7.
    Xiong, Y., Vandenhoute, M., Cankaya, H.: Control architecture in optical burst-switched WDM networks. IEEE Journal on Selected Areas in Communications (JSAC) 18, 1838–1851 (2000)CrossRefGoogle Scholar
  8. 8.
    Jajszczyk, A.: A Class of Directional-Coupler-Based Photonic Switching Networks. IEEE Transactions on Communications 41(4), 599–603 (1993)CrossRefGoogle Scholar
  9. 9.
    Padmanbhan, K., Netravali, A.N.: Dialated Networks for Photonic Switching. IEEE Transaction on Communications COM-35(12), 1357–1365 (1987)CrossRefGoogle Scholar
  10. 10.
    Chikama, T., Onaka, H., Kuroyanagi, S.: Photonic Networking Using Optical Add Drop Multiplexers and Optical Cross-Connects. Fujitsu Science and Technology Journal 35(1), 46–55 (1999)Google Scholar
  11. 11.
    Hinton, H.S.: A Nonblocking Optical Interconnection Network using Directional Couplers. 1984 IEEE Globecom 2, 885–889 (1984)Google Scholar
  12. 12.
    Hinton, H.S.: An introduction to Photonic Switching Fabrics, pp. 83–158. Plenum publishing co, New York (1993)Google Scholar
  13. 13.
    Spanke, R.A.: Architectures for Guided-wave Optical Switching Systems. IEEE Communications Magazine 25(5), 42–48 (1987)CrossRefGoogle Scholar
  14. 14.
    Mehdi Vaez, M., Lea, C.-T.: Wide-Sense Nonblocking Banyan-Type Switching Systems Based on Directional Couplers. IEEE Transactions on Communications 16(7), 1327–1332 (1998)Google Scholar
  15. 15.
    Mehdi Vaez, M., Lea, C.-T.: Strictly Nonblocking Directional-Coupler-Based Switching Networks Under Crosstalk Constraint. IEEE Transactions on Communications 48(2), 316–323 (2000)CrossRefGoogle Scholar
  16. 16.
    Khandker, M.R., Jiang, X., Shen, H., Horiguchi, S.: A New Architecture for Nonblocking Optical Switch Networks. Photonic Network Communications 3(4), 393–400 (2001)CrossRefGoogle Scholar
  17. 17.
    Khandker, M.R., Jiang, X., Shen, H., Horiguchi, S.: A New Self-routing Non-blocking Optical MIN. In: HPC ASIA 2001, 26th, Stream B, Queensland, Australia (September 2001)Google Scholar
  18. 18.
    Lea, C.-T.: Muti-log2N networks and their applications in high speed electronic and photonic switching systems. IEEE Trans. Commun. 38, 1740–1749 (1990)CrossRefGoogle Scholar
  19. 19.
    Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann, San Francisco (1992)zbMATHGoogle Scholar
  20. 20.
    Patel, J.H.: Performance of processor-memory interconnections for multiprocessors. IEEE Trans. Comput. C-30, 771–780 (1981)CrossRefGoogle Scholar
  21. 21.
    Maier, G., Pattavina, A.: Design of photonic rearrangeable networks with zero first-order switching-element-crosstalk. IEEE Trans. Commun. 49(7), 1268–1279 (2001)CrossRefGoogle Scholar
  22. 22.
    Vaez, M.M., Lea, C.-T.: Strictly nonblocking directional-coupler-based switching networks under crosstalk constraint. IEEE Trans. Commun. 48(2), 316–323 (2000)CrossRefGoogle Scholar
  23. 23.
    Vaez, M.M., Lea, C.-T.: Wide-sense nonblocking Banyan-type switching systems based on directional couplers. IEEE J. Select. Areas Commun. 16, 1327–1332 (1998)CrossRefGoogle Scholar
  24. 24.
    Jiang, X., Khandker, M.R., Shen, H., Horiguchi, S.: Modeling the Blocking Probabilities of Crosstalk-free Optical MINs with Vertical Stacking. In: Proc. of IEEE Region 10 (IEEE TENCON 2002), Beijing, China (October 2002)Google Scholar
  25. 25.
    Jiang, X., Khandker, M.R., Horiguchi, S.: Upper-bound for blocking probabilities of a Class of Optical MINs Under Crosstalk-free Constraint. In: Proceedings of the 2001 IEEE Workshop on High Performance Switching and Routing, Dallas, USA, May 2001, pp. 203–207 (2001)Google Scholar
  26. 26.
    Jiang, X., Shen, H., Khandker, M.R., Horiguchi, S.: Blocking Behaviors of Crosstalk-free Optical Banyan Networks on Vertical Stacking. IEEE/ACM Transactions on Networking 11, 982–993 (2003)CrossRefGoogle Scholar
  27. 27.
    Jiang, X., Shen, H., Horiguchi, S.: Blocking Probability of Vertically Stacked Optical Banyan Networks Under Random Routing. In: Proc. of GLOBECOM 2003, San Francisco, USA, December 1-5 (2003)Google Scholar
  28. 28.
    Chen, Y., Jiang, X., Ho, P.–H., Horiguchi, S., Mouftah, H.T.: Blocking Probability Modeling of Distensible Optical Banyan Networks. In: Accepted by the International Conference on Communications, Seoul, Korea, May 15-21 (2005) (the best paper award in ICC 2005)Google Scholar
  29. 29.
    Chen, Y., Jiang, X., Horiguchi, S.: Analysis of Blocking Probability for Vertically Stacked Optical Banyan Networks with Extra Stage. In: Proceedings of the 4th IASTED International Multi-Conference, Wireless And Optical Communications, Banff, Canada, July 8-10, pp. 845–850 (2004)Google Scholar
  30. 30.
    Maruno, T.: Recent Progress in Optical Switching Device technologies in NTT. NTT Technical review 1(7), 12–19 (2003)Google Scholar
  31. 31.
    Matxer, et al.: Thermooptical digital switch array in silica on silicon with defined zero voltage state. IEEE Hournal of Lightwave Technology 16(3), 395–400 (1998)CrossRefGoogle Scholar
  32. 32.
    Tsuboi, O., et al.: A Rotational Comb-driven Micro Mirror with Large Deflection ad Lowe Drive Voltage. Optical MEMs, 532–535Google Scholar
  33. 33.
    Ramaswami, R., Sivarajan, K.: Optical networks: A practical perspective. Morgan Kaufman Publishers Inc., San Francisco (2002)Google Scholar
  34. 34.
    Zang, H., et al.: A review of routing and wavelength assignment approaches for Wavelength-Routed Optical WDM Networks. Optical Networks Magazine 1, 47–63 (2000)Google Scholar
  35. 35.
    Birman, A.: Computing approximate blocking probabilities for a class of all-optical networks. IEEE J. Sel. Areas Communication 14(5), 852–857 (1996)CrossRefGoogle Scholar
  36. 36.
    Ramamurthy, S., Mukherjee, B.: Fixed-alternate routing and wavelength conversion in wavelength-routed optical networks. In: Proc. IEEE GLOBECOM, November 1998, pp. 2295–2302 (1998)Google Scholar
  37. 37.
    Mokhtar, H.T., Azizoglu, M.: Adaptive wavelength routing in all-optical networks. IEEE/ACM Trans. Networking 6, 197–206 (1998)CrossRefGoogle Scholar
  38. 38.
    Zhou, B., Mouftah, H.T.: Adaptive least loaded routing for multi-fiber WDM networks using approximate congestion information. Proc. IEEE ICC 5, 2745–2749 (2002)Google Scholar
  39. 39.
    Li, L., Somani, A.K.: Dynamic wavelength routing using congestion and neighborhood information. IEEE/ACM Trans. Networking 7(5), 779–786 (1999) Google Scholar
  40. 40.
    Dorigo, M., Maniezzo, V.: Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Systems, Man, and Cybernetics-Part B 26(1), 29–41 (1996)CrossRefGoogle Scholar
  41. 41.
    Ngo, S.H., Jiang, X., Horiguchi, S.: Adaptive routing and wavelength assignment using ant-based algorithm. In: Proc. 12th IEEE ICON, Singapore, November 2004, vol. 2, pp. 482–486 (2004)Google Scholar
  42. 42.
    Le, V.T., Jiang, X., Ngo, S.H., Horiguchi, S.: Dynamic RWA based on the combination of mobile agents technique and genetic algorithm in WDM networks with sparse wavelength conversion. In: 19th IEEE IPDPS, Colorado, USA (April 2005)Google Scholar
  43. 43.
    Azim, M.A., Jiang, X., Khandker, M.R., Horiguchi, S., Ho, P.H.: Active Light-path Restoration in WDM Networks. OSA Journal of Optical Networking 3(4), 247–260 (2004)CrossRefGoogle Scholar
  44. 44.
    Bhandari, R.: Survivable Networks: Algorithms for Diverse Routing. Kluwer Academic Publishers, Boston (1999)Google Scholar
  45. 45.
    Ho, P.-H., Mouftah, H.T.: A Framework of Service Guaranteed Shared Protection for Optical Networks. IEEE Communications Magazine, 97–103 (February 2002)Google Scholar
  46. 46.
    Maier, G., Patre, S.D., Patavina, A., Martinelli, M.: Optical Network Survivability: Protection Techniques in the WDM Layer. Photonic Network Communications 4(3/4), 251–269 (2002)CrossRefGoogle Scholar
  47. 47.
    Ramamurthy, S., Mukherjee, B.: Survivable WDM Mesh Networks, Part II - Restoration. In: Proc. ICC 1999, vol. 3, pp. 2023–2030 (1999)Google Scholar
  48. 48.
    Mohan, G., Siva Ram Murthy, C.: Lightpath Restoration in WDM Optical Networks. IEEE Network 14(6), 24–32 (2000)CrossRefGoogle Scholar
  49. 49.
    Azim, M.A., Jiang, X., Ho, P.-H., Horiguchi, S.: Performance Analysis of WDM Networks Employing Active Restoration. In: The IASTED international conference on Optical Communication Systems and Networks (OCSN 2004) (July 2004)Google Scholar
  50. 50.
    Birman, A.: Computing Approximate Blocking Probabilities for a Class of All-Optical Networks. IEEE Journal on Selected areas in Communications 14(5), 853–857 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Graduate School of Information SciencesTohoku UniversitySendaiJapan

Personalised recommendations