Skip to main content

Towards Peta-Bit Photonic Networks

  • Conference paper
Parallel and Distributed Processing and Applications (ISPA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3758))

  • 764 Accesses

Abstract

With a tremendous growth in the Internet traffic, next generation network have been requiring a large increase in transmission capacity, switching-system high-throughput and high-performance optical networking. Wavelength Division Multiplexing (WDM) technology has been increased to the number of wavelengths per fiber hundreds or more with each wavelength operating at the rates of 10Gbps or higher. Thus, the use of all-optical (photonic) networks based on the WDM technology is considered promising to provide peta-bit bandwidth for next generation Internet. To enable the future peta-bit photonic networks, deliberate studies are deserved for some key techniques, such as the ultra-high speed all-optical switching, high performance routing and wavelength assignment (RWA), efficient restoration and protection, etc. This paper provides you with the knowledge about dense WDM networks, high-speed optical switching architectures, high performance routing and wavelength assignment, efficient restoration, as well as prospective vision of future photonic Internet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Horiguch, S., Ochiimizu, K., Katayama, T.: The Proceeding of the International Symposium on Towards Peta-Bit Ultra-Networks, pp. 1–188. A&I Ltd (2003) ISBN4-9900330-3-5

    Google Scholar 

  2. Karalopulos, S.V.: DWDM: Networks, Devices, and Technology. Wiley Iterscience and IEEE Press, Hoboken (2003)

    Google Scholar 

  3. Karalopulos, S.V.: Elastic Bandwidth. IEEE Circuits ans Devices 18(1), 8–13 (2002)

    Article  Google Scholar 

  4. Khandker, M.R., Horiguchi, S.: 3x3 Wide Sense Non-blocking Optical Switch for WDM Self-healing Ring Networks. In: Proc. Int’l Conf. On Electrical and Computer Engineering, Icece, pp. 222–225 (2001)

    Google Scholar 

  5. Qiao, C., Yoo, M.: Optical burst switching (OBS): A new paradigm for an optical internet. Journal of high speed networks (JHSN) on WDM Networks 8(1) (1999)

    Google Scholar 

  6. Chen, Y., Qiao, C., Yu, X.: An optical burst switching: a new area in optical networking research. IEEE Network 18, 16–23 (2004)

    Article  Google Scholar 

  7. Xiong, Y., Vandenhoute, M., Cankaya, H.: Control architecture in optical burst-switched WDM networks. IEEE Journal on Selected Areas in Communications (JSAC) 18, 1838–1851 (2000)

    Article  Google Scholar 

  8. Jajszczyk, A.: A Class of Directional-Coupler-Based Photonic Switching Networks. IEEE Transactions on Communications 41(4), 599–603 (1993)

    Article  Google Scholar 

  9. Padmanbhan, K., Netravali, A.N.: Dialated Networks for Photonic Switching. IEEE Transaction on Communications COM-35(12), 1357–1365 (1987)

    Article  Google Scholar 

  10. Chikama, T., Onaka, H., Kuroyanagi, S.: Photonic Networking Using Optical Add Drop Multiplexers and Optical Cross-Connects. Fujitsu Science and Technology Journal 35(1), 46–55 (1999)

    Google Scholar 

  11. Hinton, H.S.: A Nonblocking Optical Interconnection Network using Directional Couplers. 1984 IEEE Globecom 2, 885–889 (1984)

    Google Scholar 

  12. Hinton, H.S.: An introduction to Photonic Switching Fabrics, pp. 83–158. Plenum publishing co, New York (1993)

    Google Scholar 

  13. Spanke, R.A.: Architectures for Guided-wave Optical Switching Systems. IEEE Communications Magazine 25(5), 42–48 (1987)

    Article  Google Scholar 

  14. Mehdi Vaez, M., Lea, C.-T.: Wide-Sense Nonblocking Banyan-Type Switching Systems Based on Directional Couplers. IEEE Transactions on Communications 16(7), 1327–1332 (1998)

    Google Scholar 

  15. Mehdi Vaez, M., Lea, C.-T.: Strictly Nonblocking Directional-Coupler-Based Switching Networks Under Crosstalk Constraint. IEEE Transactions on Communications 48(2), 316–323 (2000)

    Article  Google Scholar 

  16. Khandker, M.R., Jiang, X., Shen, H., Horiguchi, S.: A New Architecture for Nonblocking Optical Switch Networks. Photonic Network Communications 3(4), 393–400 (2001)

    Article  Google Scholar 

  17. Khandker, M.R., Jiang, X., Shen, H., Horiguchi, S.: A New Self-routing Non-blocking Optical MIN. In: HPC ASIA 2001, 26th, Stream B, Queensland, Australia (September 2001)

    Google Scholar 

  18. Lea, C.-T.: Muti-log2N networks and their applications in high speed electronic and photonic switching systems. IEEE Trans. Commun. 38, 1740–1749 (1990)

    Article  Google Scholar 

  19. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann, San Francisco (1992)

    MATH  Google Scholar 

  20. Patel, J.H.: Performance of processor-memory interconnections for multiprocessors. IEEE Trans. Comput. C-30, 771–780 (1981)

    Article  Google Scholar 

  21. Maier, G., Pattavina, A.: Design of photonic rearrangeable networks with zero first-order switching-element-crosstalk. IEEE Trans. Commun. 49(7), 1268–1279 (2001)

    Article  Google Scholar 

  22. Vaez, M.M., Lea, C.-T.: Strictly nonblocking directional-coupler-based switching networks under crosstalk constraint. IEEE Trans. Commun. 48(2), 316–323 (2000)

    Article  Google Scholar 

  23. Vaez, M.M., Lea, C.-T.: Wide-sense nonblocking Banyan-type switching systems based on directional couplers. IEEE J. Select. Areas Commun. 16, 1327–1332 (1998)

    Article  Google Scholar 

  24. Jiang, X., Khandker, M.R., Shen, H., Horiguchi, S.: Modeling the Blocking Probabilities of Crosstalk-free Optical MINs with Vertical Stacking. In: Proc. of IEEE Region 10 (IEEE TENCON 2002), Beijing, China (October 2002)

    Google Scholar 

  25. Jiang, X., Khandker, M.R., Horiguchi, S.: Upper-bound for blocking probabilities of a Class of Optical MINs Under Crosstalk-free Constraint. In: Proceedings of the 2001 IEEE Workshop on High Performance Switching and Routing, Dallas, USA, May 2001, pp. 203–207 (2001)

    Google Scholar 

  26. Jiang, X., Shen, H., Khandker, M.R., Horiguchi, S.: Blocking Behaviors of Crosstalk-free Optical Banyan Networks on Vertical Stacking. IEEE/ACM Transactions on Networking 11, 982–993 (2003)

    Article  Google Scholar 

  27. Jiang, X., Shen, H., Horiguchi, S.: Blocking Probability of Vertically Stacked Optical Banyan Networks Under Random Routing. In: Proc. of GLOBECOM 2003, San Francisco, USA, December 1-5 (2003)

    Google Scholar 

  28. Chen, Y., Jiang, X., Ho, P.–H., Horiguchi, S., Mouftah, H.T.: Blocking Probability Modeling of Distensible Optical Banyan Networks. In: Accepted by the International Conference on Communications, Seoul, Korea, May 15-21 (2005) (the best paper award in ICC 2005)

    Google Scholar 

  29. Chen, Y., Jiang, X., Horiguchi, S.: Analysis of Blocking Probability for Vertically Stacked Optical Banyan Networks with Extra Stage. In: Proceedings of the 4th IASTED International Multi-Conference, Wireless And Optical Communications, Banff, Canada, July 8-10, pp. 845–850 (2004)

    Google Scholar 

  30. Maruno, T.: Recent Progress in Optical Switching Device technologies in NTT. NTT Technical review 1(7), 12–19 (2003)

    Google Scholar 

  31. Matxer, et al.: Thermooptical digital switch array in silica on silicon with defined zero voltage state. IEEE Hournal of Lightwave Technology 16(3), 395–400 (1998)

    Article  Google Scholar 

  32. Tsuboi, O., et al.: A Rotational Comb-driven Micro Mirror with Large Deflection ad Lowe Drive Voltage. Optical MEMs, 532–535

    Google Scholar 

  33. Ramaswami, R., Sivarajan, K.: Optical networks: A practical perspective. Morgan Kaufman Publishers Inc., San Francisco (2002)

    Google Scholar 

  34. Zang, H., et al.: A review of routing and wavelength assignment approaches for Wavelength-Routed Optical WDM Networks. Optical Networks Magazine 1, 47–63 (2000)

    Google Scholar 

  35. Birman, A.: Computing approximate blocking probabilities for a class of all-optical networks. IEEE J. Sel. Areas Communication 14(5), 852–857 (1996)

    Article  Google Scholar 

  36. Ramamurthy, S., Mukherjee, B.: Fixed-alternate routing and wavelength conversion in wavelength-routed optical networks. In: Proc. IEEE GLOBECOM, November 1998, pp. 2295–2302 (1998)

    Google Scholar 

  37. Mokhtar, H.T., Azizoglu, M.: Adaptive wavelength routing in all-optical networks. IEEE/ACM Trans. Networking 6, 197–206 (1998)

    Article  Google Scholar 

  38. Zhou, B., Mouftah, H.T.: Adaptive least loaded routing for multi-fiber WDM networks using approximate congestion information. Proc. IEEE ICC 5, 2745–2749 (2002)

    Google Scholar 

  39. Li, L., Somani, A.K.: Dynamic wavelength routing using congestion and neighborhood information. IEEE/ACM Trans. Networking 7(5), 779–786 (1999)

    Google Scholar 

  40. Dorigo, M., Maniezzo, V.: Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Systems, Man, and Cybernetics-Part B 26(1), 29–41 (1996)

    Article  Google Scholar 

  41. Ngo, S.H., Jiang, X., Horiguchi, S.: Adaptive routing and wavelength assignment using ant-based algorithm. In: Proc. 12th IEEE ICON, Singapore, November 2004, vol. 2, pp. 482–486 (2004)

    Google Scholar 

  42. Le, V.T., Jiang, X., Ngo, S.H., Horiguchi, S.: Dynamic RWA based on the combination of mobile agents technique and genetic algorithm in WDM networks with sparse wavelength conversion. In: 19th IEEE IPDPS, Colorado, USA (April 2005)

    Google Scholar 

  43. Azim, M.A., Jiang, X., Khandker, M.R., Horiguchi, S., Ho, P.H.: Active Light-path Restoration in WDM Networks. OSA Journal of Optical Networking 3(4), 247–260 (2004)

    Article  Google Scholar 

  44. Bhandari, R.: Survivable Networks: Algorithms for Diverse Routing. Kluwer Academic Publishers, Boston (1999)

    Google Scholar 

  45. Ho, P.-H., Mouftah, H.T.: A Framework of Service Guaranteed Shared Protection for Optical Networks. IEEE Communications Magazine, 97–103 (February 2002)

    Google Scholar 

  46. Maier, G., Patre, S.D., Patavina, A., Martinelli, M.: Optical Network Survivability: Protection Techniques in the WDM Layer. Photonic Network Communications 4(3/4), 251–269 (2002)

    Article  Google Scholar 

  47. Ramamurthy, S., Mukherjee, B.: Survivable WDM Mesh Networks, Part II - Restoration. In: Proc. ICC 1999, vol. 3, pp. 2023–2030 (1999)

    Google Scholar 

  48. Mohan, G., Siva Ram Murthy, C.: Lightpath Restoration in WDM Optical Networks. IEEE Network 14(6), 24–32 (2000)

    Article  Google Scholar 

  49. Azim, M.A., Jiang, X., Ho, P.-H., Horiguchi, S.: Performance Analysis of WDM Networks Employing Active Restoration. In: The IASTED international conference on Optical Communication Systems and Networks (OCSN 2004) (July 2004)

    Google Scholar 

  50. Birman, A.: Computing Approximate Blocking Probabilities for a Class of All-Optical Networks. IEEE Journal on Selected areas in Communications 14(5), 853–857 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Horiguchi, S. (2005). Towards Peta-Bit Photonic Networks. In: Pan, Y., Chen, D., Guo, M., Cao, J., Dongarra, J. (eds) Parallel and Distributed Processing and Applications. ISPA 2005. Lecture Notes in Computer Science, vol 3758. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11576235_3

Download citation

  • DOI: https://doi.org/10.1007/11576235_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29769-7

  • Online ISBN: 978-3-540-32100-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics