Rank-Sensitive Data Structures

  • Iwona Bialynicka-Birula
  • Roberto Grossi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3772)

Abstract

Output-sensitive data structures result from preprocessing n items and are capable of reporting the items satisfying an on-line query in O(t(n) + ℓ) time, where t(n) is the cost of traversing the structure and ℓ ≤ n is the number of reported items satisfying the query. In this paper we focus on rank-sensitive data structures, which are additionally given a ranking of the n items, so that just the top k best-ranking items should be reported at query time, sorted in rank order, at a cost of O(t(n) + k) time. Note that k is part of the query as a parameter under the control of the user (as opposed to ℓ which is query-dependent). We explore the problem of adding rank-sensitivity to data structures such as suffix trees or range trees, where the ℓ items satisfying the query form O(polylog(n)) intervals of consecutive entries from which we choose the top k best-ranking ones. Letting s(n) be the number of items (including their copies) stored in the original data structures, we increase the space by an additional term of O(s(n) lgεn) memory words of space, each of O(lg n) bits, for any positive constant ε < 1. We allow for changing the ranking on the fly during the lifetime of the data structures, with ranking values in 0 ... O(n). In this case, query time becomes O(t(n) + k) plus O(lg n/ lg lg n) per interval; each change in the ranking and each insertion/deletion of an item takes O(lg n); the additional term in space occupancy increases to O(s(n) lg n/ lg lg n).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ajtai, M., Fredman, M., Komlòs, J.: Hash functions for priority queues. Information and Control 63(3), 217–225 (1984)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arge, L., Vitter, J.S.: Optimal external memory interval management. SIAM Journal on Computing 32, 1488–1508 (2003)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley Longman Publishing Co., Inc., Amsterdam (1999)Google Scholar
  4. 4.
    Chazelle, B.: A functional approach to data structures and its use in multidimensional searching. SIAM Journal on Computing 17(3), 427–462 (1988)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    de Berg, M., van Kreveld, M., Overmars, M., Schwartzkopf, O.: Computational Geometry: Algorithms and Applications. Springer, Heidelberg (1997)MATHGoogle Scholar
  6. 6.
    Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures persistent. J. Computer and System Sciences 38(1), 86–124 (1989)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ferragina, P., Grossi, R.: The string B-tree: A new data structure for string search in external memory and its applications. J. ACM 46, 236–280 (1999)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Fiat, A., Kaplan, H.: Making data structures confluently persistent. J. Algorithms 48(1), 16–58 (2003)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fich, F.E.: Class notes CSC 2429F: Dynamic data structures. Department of Computer Science. University of Toronto, Canada (2003)Google Scholar
  10. 10.
    Frederickson, G.N.: An optimal algorithm for selection in a min-heap. Inf. Comput. 104(2), 197–214 (1993)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Fredman, M.L., Willard, D.E.: Trans-dichotomous algorithms for minimum spanning trees and shortest paths. JCSS 48(3), 533–551 (1994)MATHMathSciNetGoogle Scholar
  12. 12.
    Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry problems. In: STOC 1984, Washington, D.C, pp. 135–143 (1984)Google Scholar
  13. 13.
    Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and computational biology. Cambridge University Press, Cambridge (1997)MATHCrossRefGoogle Scholar
  14. 14.
    Hearn, D., Baker, M.: Computer Graphics with OpenGL. Prentice-Hall, Englewood Cliffs (2003)Google Scholar
  15. 15.
    Kaplan, H., Molad, E., Tarjan, R.E.: Dynamic rectangular intersection with priorities. In: STOC 2003, pp. 639–648. ACM Press, New York (2003)CrossRefGoogle Scholar
  16. 16.
    Kitsios, N., Makris, C., Sioutas, S., Tsakalidis, A., Tsaknakis, J., Vassiliadis, B.: 2-D spatial indexing scheme in optimal time. In: Masunaga, Y., Thalheim, B., Štuller, J., Pokorný, J. (eds.) ADBIS 2000 and DASFAA 2000. LNCS, vol. 1884, p. 107. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of the ACM 46(5), 604–632 (1999)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Lempel, R., Moran, S.: SALSA: the stochastic approach for link-structure analysis. ACM Transactions on Information Systems 19(2), 131–160 (2001)CrossRefGoogle Scholar
  19. 19.
    McCreight, E.M.: Priority search trees. SIAM Journal on Computing 14(2), 257–276 (1985)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Mortensen, C.W.: Fully-dynamic two dimensional orthogonal range and line segment intersection reporting in logarithmic time. In: SODA 2003, pp. 618–627 (2003)Google Scholar
  21. 21.
    Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: SODA 2002: Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics, pp. 657–666 (2002)Google Scholar
  22. 22.
    Myrvold, W., Ruskey, F.: Ranking and unranking permutations in linear time. Information Processing Letters 79(6), 281–284 (2001)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Overmars, M.H.: The Design of Dynamic Data Structures. LNCS, vol. 156. Springer, Heidelberg (1983)MATHGoogle Scholar
  24. 24.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Tech. rep, Stanford University, Stanford, CA (1998)Google Scholar
  25. 25.
    Raman, R.: Eliminating amortization: on data structures with guaranteed response time. PhD thesis, Rochester, NY, USA (1993)Google Scholar
  26. 26.
    Thorup, M.: On AC0 implementations of fusion trees and atomic heaps. In: Proceedings of the fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2003), January 12–14, pp. 699–707. ACM Press, New York (2003)Google Scholar
  27. 27.
    Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14, 249–260 (1995)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Vitter, J.S.: External memory algorithms and data structures: dealing with massive data. ACM Computing Surveys 33(2), 209–271 (2001)CrossRefGoogle Scholar
  29. 29.
    Vuillemin, J.: A unifying look at data structures. Communications of the ACM 23(4), 229–239 (1980)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Weiner, P.: Linear pattern matching algorithms. In: Conference Record, IEEE 14th Annual Symposium on Switching and Automata Theory, pp. 1–11 (1973)Google Scholar
  31. 31.
    Ian Witten, H., Moffat, A., Bell, T.C.: Managing gigabytes: Compressing and indexing documents and images. Morgan Kaufmann Pubs. Inc., San Francisco (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Iwona Bialynicka-Birula
    • 1
  • Roberto Grossi
    • 1
  1. 1.Dipartimento di InformaticaUniversità di PisaPisaItaly

Personalised recommendations