Transformation to Dynamic Single Assignment Using a Simple Data Flow Analysis

  • Peter Vanbroekhoven
  • Gerda Janssens
  • Maurice Bruynooghe
  • Francky Catthoor
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3780)


This paper presents a novel method to construct a dynamic single assignment (DSA) form of array-intensive, pointer-free C programs (or in any other procedural language). A program in DSA form does not perform any destructive update of scalars and array elements, i.e., each element is written at most once. As DSA makes the dependencies between variable references explicit, it facilitates complex analyses and optimizations of programs. Existing transformations into DSA perform a complex data flow analysis with exponential analysis time and work only for a limited set of input programs. Our method removes irregularities from the data flow by adding copy assignments to the program, and then it can use simple data flow analyses. The DSA transformation presented scales very well with growing program sizes and overcomes a number of important limitations of existing methods. We have implemented the method and it is being used in the context of memory optimization and verification of those optimizations.


Array Element Systolic Array Transformation Time Program Point Loop Bound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques and Tools. Addison-Wesley, Inc., Reading (1986)Google Scholar
  2. 2.
  3. 3.
    Ballance, R.A., Maccabe, A.B., Ottenstein, K.J.: The program dependence web: A representation supporting control-, and demand-driven interpretation of imperative languages. In: Proceedings of PLDI 1990, pp. 257–271 (1990)Google Scholar
  4. 4.
    Bu, J., Deprettere, E.: Converting sequential interative algorithms to recurrent equations for automatic design of systolic arrays. In: Proceedings of ICASSP 1988, vol. IV, pp. 2025–2028. IEEE Press, Los Alamitos (1988)Google Scholar
  5. 5.
    Catthoor, F., Wuytack, S., De Greef, E., Balasa, F., Nachtergaele, L., Vandecappelle, A.: Custom Memory Management Methodology: Exploration of Memory Organisation for Embedded Multimedia System Design. Kluwer Academic Publishers, Dordrecht (1998)zbMATHGoogle Scholar
  6. 6.
    Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently computing static single assignment form and the control dependence graph. ACM Transactions on Programming Languages and Systems 13(4), 451–490 (1991)CrossRefGoogle Scholar
  7. 7.
    Feautrier, P.: Array expansion. In: Proceedings of the Second International Conference on Supercomputing, St. Malo, France, pp. 429–441 (1988)Google Scholar
  8. 8.
    Genin, D., Hilfinger, P.: Silage Reference Manual, Draft 1.0. Silvar-Lisco, Leuven (1989)Google Scholar
  9. 9.
    Karp, R., Miller, R., Winograd, S.: The organization of computations for uniform recurrence equations. Journal of the ACM 14, 563–590 (1967)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kienhuis, B.: Matparser: An array dataflow analysis compiler. Technical report, University of California, Berkeley (February 2000)Google Scholar
  11. 11.
    Knobe, K., Sarkar, V.: Array SSA form and its use in parallelization. In: Symposium on Principles of Programming Languages, pp. 107–120 (1998)Google Scholar
  12. 12.
    Li, Z.: Array privatization for parallel execution of loops. In: ICS 1992: Proceedings of the 6th international conference on Supercomputing, pp. 313–322. ACM Press, New York (1992)CrossRefGoogle Scholar
  13. 13.
    Offner, C., Knobe, K.: Weak dynamic single assignment form. Technical Report HPL-2003-169, HP Labs (August 2003)Google Scholar
  14. 14.
    Pugh, W.: The Omega test: A fast and practical integer programming algorithm for dependence analysis. In: Proceedings of Supercomputing 1991, Albuquerque, NM (1991)Google Scholar
  15. 15.
    Quilleré, F., Rajopadhye, S.: Optimizing memory usage in the polyhedral model. ACM Transactions on Programming Languages 22(5), 773–815 (2000)CrossRefGoogle Scholar
  16. 16.
    Quinton, P.: Automatic synthesis of systolic arrays from uniform recurrent equations. In: ISCA 1984: Proceedings of the 11th annual International Symposium on Computer Architecture, pp. 208–214. ACM Press, New York (1984)CrossRefGoogle Scholar
  17. 17.
    Scholz, S.-B.: Single Assignment C - Functional Programming Using Imperative style. In: Proceedings of the 6th International Workshop on Implementation of Functional Languages (IFL 1994), pp. 21.1–21.13 (1994)Google Scholar
  18. 18.
    Schrijver, A.: Theory of Integer and Linear Programming. John Wiley and Sons, Chichester (1986)zbMATHGoogle Scholar
  19. 19.
    Shashidhar, K., Bruynooghe, M., Catthoor, F., Janssens, G.: An automatic verification technique for loop and data reuse transformations based on geometric modeling of programs. Journal of Universal Computer Science 9(3), 248–269 (2003)Google Scholar
  20. 20.
    Shashidhar, K., Bruynooghe, M., Catthoor, F., Janssens, G.: Automatic verification of source code transformations on array-intensive programs: demonstration with real-life examples. Technical Report CW 401, Department of Computer Science, Katholieke Universiteit Leuven, Belgium (2005) (In preparation)Google Scholar
  21. 21.
    Shashidhar, K., Bruynooghe, M., Catthoor, F., Janssens, G.: Verification of Source Code Transformations by Program Equivalence Checking. In: Bodik, R. (ed.) CC 2005. LNCS, vol. 3443, pp. 221–236. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Vanbroekhoven, P., Janssens, G., Bruynooghe, M., Corporaal, H., Catthoor, F.: Advanced copy propagation for arrays. In: Languages, Compilers, and Tools for Embedded Systems LCTES 2003, June 2003, pp. 24–33 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Peter Vanbroekhoven
    • 1
  • Gerda Janssens
    • 1
  • Maurice Bruynooghe
    • 1
  • Francky Catthoor
    • 2
  1. 1.Katholieke Universiteit LeuvenBelgium
  2. 2.Interuniversity MicroElectronics CenterBelgium

Personalised recommendations