Advertisement

Comparative Analysis of Deterministic and Nondeterministic Decision Tree Complexity Local Approach

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3700)

Abstract

For problems over arbitrary information system we study the relationships among the complexity of a problem description, the minimal complexity of a decision tree solving this problem deterministically, and the minimal complexity of a decision tree solving this problem nondeterministically. We consider the local approach to investigation of decision trees where only attributes from a problem description are used for construction of decision trees solving this problem.

Keywords

Decision tree rough set theory complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlswede, R., Wegener, I.: Suchprobleme. B.G. Teubner, Stuttgart (1979)Google Scholar
  2. 2.
    Angluin, D.: Queries and concept learning. Machine Learning 2(4), 319–342 (1988)Google Scholar
  3. 3.
    Bazan, J., Nguyen, H.S., Nguyen, S.H., Synak, P., Wróblewski, J.: Rough set algorithms in classification problems. In: Polkowski, L., Lin, T.Y., Tsumoto, S. (eds.) Rough Set Methods and Applications: New Developments in Knowledge Discovery in Information Systems. Studies in Fuzziness and Soft Computing, vol. 56, pp. 48–88. Phisica, Springer (2000)Google Scholar
  4. 4.
    Chegis, I.A., Yablonskii, S.V.: Logical methods of electric circuit control. Trudy MIAN SSSR 51, 270–360 (1958) (in Russian)Google Scholar
  5. 5.
    Humby, E.: Programs from Decision Tables. Macdonald, London and American Elsevier, New York (1973)Google Scholar
  6. 6.
    Moshkov, M.J.: Conditional tests. In: Yablonskii, S.V. (ed.) Problems of Cybernetics, vol. 40, pp. 131–170. Nauka Publishers, Moscow (1983) (in Russian)Google Scholar
  7. 7.
    Moshkov, M.J.: Decision Trees. In: Theory and Applications, Nizhny Novgorod University Publishers, Nizhny Novgorod (1994) (in Russian)Google Scholar
  8. 8.
    Moshkov, M.J.: Comparative analysis of complexity of deterministic and nondeterministic decision trees. In: Local Approach. Actual Problems of Modern Mathematics, vol. 1, pp. 109–113. NII MIOO NGU Publishers, Novosibirsk (1995) (in Russian)Google Scholar
  9. 9.
    Moshkov, M.J.: Two approaches to investigation of deterministic and nondeterministic decision tree complexity. In: Proceedings of the World Conference on the Fundamentals of AI, Paris, France, pp. 275–280 (1995)Google Scholar
  10. 10.
    Moshkov, M.J.: Local and global approaches to comparative analysis of complexity of deterministic and nondeterministic decision trees. In: Actual Problems of Modern Mathematics, vol. 2, pp. 110–118. NII MIOO NGU Publishers, Novosibirsk (1996) (in Russian)Google Scholar
  11. 11.
    Moshkov, M.J.: Comparative analysis of deterministic and nondeterministic decision tree complexity. Global approach. Fundamenta Informaticae 25, 201–214 (1996)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Pawlak, Z.: Information Systems – Theoretical Foundations. PWN, Warsaw (1981) (in Polish)Google Scholar
  13. 13.
    Pawlak, Z.: Rough Sets – Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)zbMATHGoogle Scholar
  14. 14.
    Picard, C.F.: Theorie des Questionnaires. Gauthier-Villars, Paris (1965)Google Scholar
  15. 15.
    Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, Heidelberg (1985)Google Scholar
  16. 16.
    Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)Google Scholar
  17. 17.
    Skowron, A.: Rough sets in KDD. In: Proceedings of the 16-th World Computer Congress (IFIP 2000), Beijing, China, pp. 1–14 (2000)Google Scholar
  18. 18.
    Skowron, A., Pawlak, Z., Komorowski, J., Polkowski, L.: A rough set perspective on data and knowledge. In: Kloesgen, W., Zytkow, J. (eds.) Handbook of KDD, pp. 134–149. Oxford University Press, Oxford (2002)Google Scholar
  19. 19.
    Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Slowinski, R. (ed.) Intelligent Decision Support. Handbook of Applications and Advances of the Rough Set Theory, pp. 331–362. Kluwer Academic Publishers, Dordrecht (1992)Google Scholar
  20. 20.
    Tarasova, V.P.: Opponent Strategy Method in Optimal Search Problems. Moscow University Publishers, Moscow (1988) (in Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Institute of Computer ScienceUniversity of SilesiaSosnowiecPoland

Personalised recommendations