Supervised Learning in the Gene Ontology Part I: A Rough Set Framework

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3700)


Prediction of gene function introduces a new learning problem where the decision classes associated with the objects (i.e., genes) are organized in a directed acyclic graph (DAG). Rough set theory, on the other hand, assumes that the classes are unrelated cannot handle this problem properly. To this end, we introduce a new rough set framework. The traditional decision system is extended into DAG decision system which can represent the DAG. From this system we develop several new operators, which can determine the known and the potential objects of a class and show how these sets can be combined with the usual rough set approximations. The properties of these operators are also investigated.


Gene Ontology Directed Acyclic Graph Decision Class Information Vector Gene Ontology Consortium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brown, M.P.S., Grundy, W.N., Lin, D., Cristianini, N., Sugnet, C.W., Furey, T.S., Ares Jr., M., Haussler, D.: Knowledge-based analysis of microarray gene expression data by using support vector machines. In: Proceedings of the National Academy of Sciences, USA, vol. 97(1), pp. 262–267 (2000)Google Scholar
  2. 2.
    The Gene Ontology Consortium. Gene Ontology: Tool for the unification of biology. Nature Genetics 25(1), 25–29 (2000)Google Scholar
  3. 3.
    The Gene Ontology Consortium. Creating the Gene Ontology resource: Design and implementation. Genome Research 11, 1425–1433 (2001)Google Scholar
  4. 4.
    The Gene Ontology Consortium. The gene ontology (GO) database and informatics resource. Nucleic Acids Research 32, D258–D261 (2004)Google Scholar
  5. 5.
    Frishman, D., Albermann, K., Hani, J., Heumann, K., Metanomski, A., Zollner, A., Mewes, H.-W.: Functional and structural genomics using PEDANT. Bioinformatics 17(1), 44–57 (2001)CrossRefGoogle Scholar
  6. 6.
    Greco, S., Matarazzo, B., Słowiński, R.: A new rough set approach to multicriteria and multiattribute classification. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 60–67. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Grzymala-Busse, J.W.: Knowledge acquisition under uncertainty – a rough set approach. Journal of Intelligent and Robotic System 1, 3–16 (1988)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Grzymala-Busse, J.W.: LERS – A system for learning from examples based on rough sets. In: Intelligent decision support: Handbook of Applications and Advances of Rough Sets Theory, pp. 3–18. Kluwer Academic Publishers, Dordrecht (1992)Google Scholar
  9. 9.
    Hvidsten, T.R., Komorowski, J., Sandvik, A.K., Lægreid, A.: Predicting gene function from gene expressions and ontologies. In: Proceedings of the Pacific Symposium on Biocomputing 6 (PSB 2001), pp. 299–310. World Scientific Press, Singapore (2001)Google Scholar
  10. 10.
    Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: A rough set perspective on data and knowledge. In: Pal, S.K., Skowron, A. (eds.) Rough Fuzzy Hybridization, pp. 107–121. Springer, Heidelberg (1999)Google Scholar
  11. 11.
    Małuszyński, J., Vitoria, A.: Towards rough datalog: Embedding rough sets in prolog. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neuro Computing: Techniques for Computing with Words, pp. 297–332. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Midelfart, H.: Knowledge Discovery from cDNA Microarrays and a priori Knowledge. PhD thesis, Department of Computer and Information Science, Norwegian University of Science and Technology (NTNU) (2003), ISBN 82-471-5617-2Google Scholar
  13. 13.
    Midelfart, H.: Supervised learning in the gene ontology— part II: A bottom-up algorithm. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets IV. LNCS, vol. 3700, pp. 98–124. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Midelfart, H., Komorowski, J.: A rough set approach to learning in a directed acyclic graph. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 144–155. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Midelfart, H., Lægreid, A., Komorowski, J.: Classification of gene expression data in an ontology. In: Crespo, J.L., Maojo, V., Martin, F. (eds.) ISMDA 2001. LNCS, vol. 2199, pp. 186–194. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. In: Series D: System Theory, Knowledge Engineering and Problem Solving. Kluwer Academic Publishers, Dordrecht (1991)Google Scholar
  17. 17.
    Ziarko, W.: Variable precision rough set model. Journal of Computer and System Sciences 46, 39–59 (1993)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Department of BiologyNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations