A String Metric for Ontology Alignment

  • Giorgos Stoilos
  • Giorgos Stamou
  • Stefanos Kollias
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3729)


Ontologies are today a key part of every knowledge based system. They provide a source of shared and precisely defined terms, resulting in system interoperability by knowledge sharing and reuse. Unfortunately, the variety of ways that a domain can be conceptualized results in the creation of different ontologies with contradicting or overlapping parts. For this reason ontologies need to be brought into mutual agreement (aligned). One important method for ontology alignment is the comparison of class and property names of ontologies using string-distance metrics. Today quite a lot of such metrics exist in literature. But all of them have been initially developed for different applications and fields, resulting in poor performance when applied in this new domain. In the current paper we present a new string metric for the comparison of names which performs better on the process of ontology alignment as well as to many other field matching problems.


Similarity Score Average Precision Good Recall Average Recall Reference Ontology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 279 (2001)Google Scholar
  2. 2.
    Benitez, A., Smith, J., Chang, S.F.: Medianet: A multimedia information network for knowledge representation. In: IS&T/SPIE-2000, vol. 4210 (2001)Google Scholar
  3. 3.
    Noy, N., Musen, M.: Anchor-prompt: Using non-local context for semantic matching. In: Proc. IJCAI 2001 workshop on ontology and information sharing, Seattle (WA US), pp. 63–70 (2001)Google Scholar
  4. 4.
    Ehrig, M., Staab, S.: Qom - quick ontology mapping. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 683–697. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Madhavan, J., Berstein, P., Rahm, E.: Generic schema matching using cupid. In: Proc. of the 27th VLDB, Roma (IT), pp. 48–58 (2001)Google Scholar
  6. 6.
    Winkler, W.: The state record linkage and current research problems. Technical report, Statistics of Income Division, Internal Revenue Service Publication (1999)Google Scholar
  7. 7.
    Monge, A., Elkan, C.: The field-matching problem: algorithm and applications. In: Proceedings of the second international Conference on Knowledge Discovery and Data Mining (1996)Google Scholar
  8. 8.
    Tejada, S., Knoblock, C.A., Minton, S.: Learning object identification rules for information integration. Information Systems 26, 607–633 (2001)zbMATHCrossRefGoogle Scholar
  9. 9.
    Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Journal of Molecular Biology 147, 195–197 (1981)CrossRefGoogle Scholar
  10. 10.
    Levenstein, I.: Binary codes capable of correcting deletions, insertions and reversals. Cybernetics and Control Theory (1966)Google Scholar
  11. 11.
    Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. Molecular Biology 48, 444–453 (1970)Google Scholar
  12. 12.
    Jaro, M.: Probabilistic linkage of large public health data files (disc. p687-689). Statistics in Medicine 14, 491–498 (1995)CrossRefGoogle Scholar
  13. 13.
    Sutinen, E., Tarhio, J.: On using q-gram locations in approximate string matching. In: Spirakis, P.G. (ed.) ESA 1995. LNCS, vol. 979, pp. 327–340. Springer, Heidelberg (1995)Google Scholar
  14. 14.
    Euzenat, J., Le Bach, T., Barrasa, J., Bouquet, P., De Bo, J., Dieng-Kuntz, R., Ehrig, M., Hauswirth, M., Jarrar, M., Lara, R., Maynard, D., Napoli, A., Stamou, G., Stuckenschmidt, H., Shvaiko, P., Tessaris, S., Van Acker, S., Zaihrayeu, I.: State of the art on ontology alignment. deliverable 2.2.3 (2004)Google Scholar
  15. 15.
    Ehrig, M., Sure, Y.: Ontology mapping - an integrated approach. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 76–91. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Do, H., Melnik, S., Rahm, E.: Comparison of schema matching evaluations. In: Proceedings of the 2nd International Workshop on Web Databases (2002)Google Scholar
  17. 17.
    Lin, D.: An information-theoretic definition of similarity. In: Proc. 15th International Conf. on Machine Learning, pp. 296–304. Morgan Kaufmann, San Francisco (1998)Google Scholar
  18. 18.
    Hamacher, H., Leberling, H., Zimmermann, H.-J.: Sensitivity analysis in fuzzy linear programming. Fuzzy Sets and Systems 1, 269–281 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: Proceedings of the IJCAI 1995, pp. 448–453 (1995)Google Scholar
  20. 20.
    Cohen, W., Ravikumar, P., Fienberg, S.: A comparison of string metrics for matching names and records. In: Proc. KDD 2003 Workshop on Data Cleaning and Object Consolidation (2003)Google Scholar
  21. 21.
    Euzenat, J.: Evaluating ontology alignment methods. In: Proc. Dagstuhl seminar on Semantic interoperability and integration, Wadern (DE), pp. 47–50 (2004)Google Scholar
  22. 22.
    Sure, Y., Corcho, O., Euzenat, J., Hughes, T. (eds.): Proceedings of the 3rd Evaluation of Ontology-based tools, EON (2004)Google Scholar
  23. 23.
    Euzenat, J.: An api for ontology alignment. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 698–712. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Cohen, W.: Data integration using similarity joins and a word-based information representation language. ACM Transactions on Information Systems 18, 288–321 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Giorgos Stoilos
    • 1
  • Giorgos Stamou
    • 1
  • Stefanos Kollias
    • 1
  1. 1.Department of Electrical and Computer EngineeringNational Technical University of AthensZographouGreece

Personalised recommendations