Advertisement

Evaluation of Fuzzy Measures in Profile Hidden Markov Models for Protein Sequences

  • Niranjan P. Bidargaddi
  • Madhu Chetty
  • Joarder Kamruzzaman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3745)

Abstract

In biological problems such as protein sequence family identification and profile building the additive hypothesis of the probability measure is not well suited for modeling HMM based profiles because of a high degree of interdependency among homologous sequences of the same family . Fuzzy measure theory which is an extension of the classical additive theory is obtained by replacing the additive requirement of classical measures with weaker properties of monotonicity, continuity and semi-continuity. The strong correlations and the sequence preference involved in the protein structures make fuzzy measure architecture based models as suitable candidates for building profiles of a given family since fuzzy measures can handle uncertainties better than classical methods . In this paper we investigate the different measures(S-decomposable, λ and belief measures) of fuzzy measure theory for building profile models of protein sequence problems. The proposed fuzzy measure models have been tested on globin and kinase families . The results obtained from the fuzzy measure models establish the superiority of fuzzy measure theory compared to classical probability measures for biological sequence problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bateman, A.: The pfam protein families database. Nucleic Acids Research 30, 276–280 (2002)CrossRefGoogle Scholar
  2. 2.
    Baldi, P., Brunak, S.: Bioinformatics-the machine learning approach. MIT press, Cambridge (2001)zbMATHGoogle Scholar
  3. 3.
    Bidargaddi, N.P., Chetty, M., Kamruzzaman, J.: Fuzzy decoding in profile hidden Markov models for protein family identification. Advances in Bioinformatics and its Applications, Series in Mathematical Biology and Medicine 8 (2004)Google Scholar
  4. 4.
    Bidargaddi, N.P., Chetty, M., Kamruzzaman, J.: Fuzzy Viterbi algorithm for improved sequence alignment and searching of proteins. In: Evo Workshops 2005. LNCS, vol. 3449, pp. 11–21 (2005)Google Scholar
  5. 5.
    Cheok, A.D.: Use of a novel generalized fuzzy hidden Markov model for speech recognition. IEEE Conf. Fuzzy System, 1207–1210 (2001)Google Scholar
  6. 6.
    Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological sequence analysis- probabilistic models of proteins and nucleic acids. Cambridge University Press, Cambridge (2003)Google Scholar
  7. 7.
    Eddy, S.R.: Profile hidden Markov models. Bioinformatics 14, 755–763 (1998)CrossRefGoogle Scholar
  8. 8.
    Grabisch, M., Murofushi, T., Sugeno, M.: Fuzzy measures and integrals - theory and applications. Physica-Verlag, Heidelberg (2000)zbMATHGoogle Scholar
  9. 9.
    Koski, T.: Hidden Markov models in bioinformatics. Kluwer academic publishers, Dordrecht (2001)Google Scholar
  10. 10.
    Krogh, A.: An introduction to hidden Markov models for biological sequences. Computational Methods in Molecular Biology 99, 45–63 (1998)CrossRefGoogle Scholar
  11. 11.
    Magdi, M.A., Gader, P.: Generalized hiddenMarkov models-part I: theoretical frameworks. IEEE Trans. Fuzzy Systems 8, 67–80 (2000)CrossRefGoogle Scholar
  12. 12.
    Shi, H., Gader, P.D.: Lexicon-driven handwritten word recognition using Choquet fuzzy integral. IEEE Conf. 99, 412–417 (1996)Google Scholar
  13. 13.
    Sugeno, M.: Fuzzy measures and fuzzy integrals- a survey. In: Gupta, M.M., Saridis, G.N., Gaines, B.R. (eds.) Fuzzy Automata and Decision Processes, pp. 89–102. North-Holland, New York (1977)Google Scholar
  14. 14.
    Tran, D., Wagner, M.: Fuzzy hidden Markov models for speech and speaker recognition. In: IEEE Conf. Speech Processing, pp. 426–430 (1999)Google Scholar
  15. 15.
    Valsan, Z., Gavat, I., Sabac, B.: Statistical and hybrid methods for speech recognition in Romanian. International Journal of Speech Technology 5, 259–268 (2002)zbMATHCrossRefGoogle Scholar
  16. 16.
    Wang, Z., Klir, G.J.: Fuzzy measures and integrals - theory and applications. Physica-Verlag, Heidelberg (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Niranjan P. Bidargaddi
    • 1
    • 2
  • Madhu Chetty
    • 1
    • 2
  • Joarder Kamruzzaman
    • 1
  1. 1.Gippsland School of Computing and Information TechnologyMonash UniversityChurchillAustralia
  2. 2.Victorian Bioinformatics ConsortiumClaytonAustralia

Personalised recommendations