Protein Secondary Structure Classifiers Fusion Using OWA

  • Majid Kazemian
  • Behzad Moshiri
  • Hamid Nikbakht
  • Caro Lucas
Conference paper

DOI: 10.1007/11573067_34

Part of the Lecture Notes in Computer Science book series (LNCS, volume 3745)
Cite this paper as:
Kazemian M., Moshiri B., Nikbakht H., Lucas C. (2005) Protein Secondary Structure Classifiers Fusion Using OWA. In: Oliveira J.L., Maojo V., Martín-Sánchez F., Pereira A.S. (eds) Biological and Medical Data Analysis. ISBMDA 2005. Lecture Notes in Computer Science, vol 3745. Springer, Berlin, Heidelberg

Abstract

The combination of classifiers has been proposed as a method to improve the accuracy achieved by a single classifier. In this study, the performances of optimistic and pessimistic ordered weighted averaging operators for protein secondary structure classifiers fusion have been investigated. Each secondary structure classifier outputs a unique structure for each input residue. We used confusion matrix of each secondary structure classifier as a general reusable pattern for converting this unique label to measurement level. The results of optimistic and pessimistic OWA operators have been compared with majority voting and five common classifiers used in the fusion process. Using a benchmark set from the EVA server, the results showed a significant improvement in the average Q3 prediction accuracy up to 1.69% toward the best classifier results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Majid Kazemian
    • 1
  • Behzad Moshiri
    • 1
  • Hamid Nikbakht
    • 2
  • Caro Lucas
    • 1
  1. 1.Control and Intelligent Processing Center of Excellence, Electrical and Computer Eng., DepartmentUniversity of TehranTehranIran
  2. 2.Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and BiophysicsUniversity of TehranTehranIran

Personalised recommendations