Extracting Molecular Diversity Between Populations Through Sequence Alignments

  • Steinar Thorvaldsen
  • Tor Flå
  • Nils P. Willassen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3745)


The use of sequence alignments for establishing protein homology relationships has an extensive tradition in the field of bioinformatics, and there is an increasing desire for more statistical methods in the data analysis. We present statistical methods and algorithms that are useful when the protein alignments can be divided into two or more populations based on known features or traits. The algorithms are considered valuable for discovering differences between populations at a molecular level. The approach is illustrated with examples from real biological data sets, and we present experimental results in applying our work on bacterial populations of Vibrio, where the populations are defined by optimal growth temperature, T opt .


sequence analysis structural analysis physicochemical properties extremophiles Fisher’s exact test Wilcoxon test 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Russell, N.J.: Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4, 83–90 (2000)CrossRefGoogle Scholar
  2. 2.
    Karlin, S., Brocchieri, L., Trent, J., Blaisdell, B.E., Mrazek, J.: Heterogeneity of genome and proteome content in bacteria, archaea, and eukaryotes. Theor. Popul. Biol. 61, 367–390 (2002)zbMATHCrossRefGoogle Scholar
  3. 3.
    Pe’er, I., Felder, C.E., Man, O., Silman, I., Sussman, J.L., Beckmann, J.S.: Proteomic signatures: Amino acid and oligopeptide compositions differentiate among phyla. Proteins-Structure Function and Genetics 54(1), 20–40 (2004)Google Scholar
  4. 4.
    Saunders, N.F.W., Thomas, T., Curmi, P.M.G., et al.: Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Res. 13(7), 1580–1588 (2003)CrossRefGoogle Scholar
  5. 5.
    Nikolova, N., Jaworska, J.: Approaches to measure chemical similarity - A review. QSAR & Combinatorial Science 9-10, 1006–1026 (2004)Google Scholar
  6. 6.
    Kearsley, S.K., Sallamack, S., Fluder, E.M., Andose, J.D., Mosley, R.T., Sheridan, R.P.: Chemical Similarity Using Physicochemical Property Descriptors. J. Chem. Inf. Comput. Sci. 36, 118–127 (1996)Google Scholar
  7. 7.
    Basak, S.C., Grunwald, G.D.: Molecular Similarity And Estimation of Molecular- Properties. J. Chem. Inf. Comput. Sci. 35, 366–372 (1995)Google Scholar
  8. 8.
    Dayhoff, M.O., Schwartz, R.M., Orcutt, B.C.: A model of evolutionary change in proteins. Atlas of Protein Sequences and Structure 5 (suppl. 3), 345–352 (1978)Google Scholar
  9. 9.
    Benner, S.A., Cohen, M.A., Gonnet, G.H.: Amino acid substitution during functionally constrained divergent evolution of protein sequences. Protein Eng. 7(11), 1323–1332 (1994)CrossRefGoogle Scholar
  10. 10.
    Jones, D.T., Taylor, W.R., Thornton, J.M.: The rapid generation of mutation data matrices from protein sequences. Computer Applications in the Biosciences 8(3), 275–282 (1992)Google Scholar
  11. 11.
    Agresti, A.: Exact inference for categorical data: recent advances and continuing controversies. Statistics in Medicine 20(17-18), 2709–2722 (2001)CrossRefGoogle Scholar
  12. 12.
    Agresti, A.: Categorical Data Analysis, 2nd edn. John Wiley & Sons, Chichester (2002)zbMATHCrossRefGoogle Scholar
  13. 13.
    Kang, S.H., Kim, S.J.: A comparison of the three conditional exact tests in two-way contingency tables using the unconditional exact power. Biometrical Journal 46(3), 320–330 (2004)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. John Wiley & Sons, Chichester (1999)Google Scholar
  15. 15.
    Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing, 2nd edn. Prentice-Hall, Englewood Cliffs (1999)Google Scholar
  16. 16.
    Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B 57, 289–300 (1995)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Benjamini, Y., Yekutieli, D., Ruepp, A., Frickey, T., et al.: The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29(4), 1165–1188 (2001)zbMATHCrossRefGoogle Scholar
  18. 18.
    Kawashima, S., Ogata, H., Kanehisa, M.: A Aindex: amino acid index database. Nucleic Acids Res. 27, 368–369 (1999)CrossRefGoogle Scholar
  19. 19.
    Gromiha, M.M., Oobatake, M., Sarai, A.: Important amino acid properties for enhanced thermostability from mesophilic to thermophilic proteins. Biophysical Chemsitry 82, 51–67 (1999)CrossRefGoogle Scholar
  20. 20.
    Tang, H., Wyckoff, G.J., Lu, J., Wu, C.-I.: A Universal Evolutionary Index for Amino Acid Changes. Mol. Biol. Evol. 21, 1548–1556 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Steinar Thorvaldsen
    • 1
  • Tor Flå
    • 1
  • Nils P. Willassen
    • 2
  1. 1.Dept of Mathematics and StatisticsFaculty of Science 
  2. 2.Department of Molecular BiotechnologyFaculty of Medicine, University of TromsøTromsøNorway

Personalised recommendations