Using Treemaps to Visualize Phylogenetic Trees

  • Adam Arvelakis
  • Martin Reczko
  • Alexandros Stamatakis
  • Alkiviadis Symeonidis
  • Ioannis G. Tollis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3745)


Over recent years the field of phylogenetics has witnessed significant algorithmic and technical progress. A new class of efficient phylogeny programs allows for computation of large evolutionary trees comprising 500–1.000 organisms within a couple of hours on a single CPU under elaborate optimization criteria. However, it is difficult to extract the valuable information contained in those large trees without appropriate visualization tools. As potential solution we propose the application of treemaps to visualize large phylogenies (evolutionary trees) and improve knowledge-retrieval. In addition, we propose a hybrid tree/treemap representation which provides a detailed view of subtrees via treemaps while maintaining a contextual view of the entire topology at the same time. Moreover, we demonstrate how it can be deployed to visualize an evolutionary tree comprising 2.415 mammals. The respective software package is available on-line at


Phylogenetic Tree Large Tree Hyperbolic Space Visualization Tool Contextual View 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bader, D.A., Moret, B.M.E., Vawter, L.: Industrial applications of highperformance computing for phylogeny reconstruction. In: Proceedings of SPIE ITCom: Commercial Applications for High-Performance Computing, pp. 159–168 (2001)Google Scholar
  2. 2.
    Berderson, B.B., Shneiderman, B., Wattenberg, M.: Ordered and quantum treemaps: Making effective use of 2d space to display hierarchies. ACM Transactions on Computer Graphics 21(4), 833–854 (2002)CrossRefGoogle Scholar
  3. 3.
    Bingham, J., Sudarsanam, S.: Visualizing large hierarchical clusters in hyperbolic space. Bioinformatics 16, 660–661 (2000)CrossRefGoogle Scholar
  4. 4.
    Bodlaender, H.L., Fellows, M.R., Hallett, M.T., Wareham, T., Warnow, T.: The hardness of perfect phylogeny, feasible register assignment and other problems on thin colored graphs. Theoretical Computer Science 244, 167–188 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bruls, D.M., Huizing, C., van Wijk, J.J.: Squarified treemaps. In: Proceedings of the joint Eurographics and IEEE TVCG Symposium on Visualization, pp. 33–42 (2000)Google Scholar
  6. 6.
    Carrizo, S.F.: Phylogenetic trees: an information visualisation perspective. In: Proceedings of the second conference on Asia-Pacific bioinformatics, pp. 315–320 (2004)Google Scholar
  7. 7.
    Day, W.H.E., Johnson, D.S., Sankoff, D.: The computational complexity of inferring rooted phylogenies by parsimony. Math. Bios. 81, 33–42 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Chase, M.W., et al.: Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid gene rbcl. Annals of the Missouri Botanical Garden, 528–580 (1993)Google Scholar
  9. 9.
    Felsenstein, J.: Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution 17, 368–376 (1981)CrossRefGoogle Scholar
  10. 10.
    Fitch, W.M.: Toward defining the course of evolution: minimum change for a specified tree topology. Syst. Zool. 20, 406–416 (1971)CrossRefGoogle Scholar
  11. 11.
    Guindon, S., Gascuel, O.: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52(5), 696–704 (2003)CrossRefGoogle Scholar
  12. 12.
    Hughes, T., Hyun, Y., Liberles, D.A.: Visualizing very large phylogenetic trees in three dimensional hyperbolic space. BMC Bioinformatics 5(48) (2004)Google Scholar
  13. 13.
    Johnson, B., Shneiderman, B.: Treemaps: a space-filling approach to the visualization of hierarchical information structures. In: Proceedings of the 2nd International IEEE Visualization Conference, October 1991, pp. 284–291 (1991)Google Scholar
  14. 14.
    Leung, J.Y.T., Lam, T.W., Wong, C.S., Young, G.H., Chin, F.Y.L.: Packing squares into a square. Journal on Parallel and Distributed Compouting 10, 271–275 (1990)CrossRefGoogle Scholar
  15. 15.
    Lemmon, A.R., Milinkovitch, M.C.: The metapopulation genetic algorithm: An efficient solution for the problem of large phylogeny estimation. Proceedings of the National Academy of Sciences 99, 10516–10521 (2001)CrossRefGoogle Scholar
  16. 16.
    Munzner, T., Guimbretiere, F., Tasiran, S., Zhang, L., Zhou, Y.: Treejuxtaposer: Scalable tree comparison using focus+context with guaranteed visibility. In: Proceedings of SIGGRAPH (2003)Google Scholar
  17. 17.
    Page, R.D.M.: Treeview: An application to display phylogenetic trees on personal computers. CABIOS 12, 357–358 (1996)Google Scholar
  18. 18.
    Plaisant, C., Grosjean, J., Bederson, B.B.: Spacetree: Supporting exploration in large node link tree, design evolution and empirical evaluation. In: Proceedings of the 2002 IEEE Symposium on Information Visualization, pp. 57–70 (2002)Google Scholar
  19. 19.
    Roshan, U., Moret, B.M.E., Warnow, T., Williams, T.L.: Rec-i-dcm3: a fast algorithmic technique for reconstructing large phylogenetic trees. In: Proceedings of the IEEE Computational Systems Bioinformatics conference (CSB), Stanford, California, USA (2004)Google Scholar
  20. 20.
    Rost, U., Bornberg-Bauer, E.: Treewiz: interactive exploration of huge trees. Bioinformatics, 109–114 (2002)Google Scholar
  21. 21.
    Ruths, D.A., Chen, E.S., Ellis, L.: Arbor3d: an interactive environment for examining phylogenetic and taxonomic trees in multiple dimensions. Bioinformatics, 1003–1009 (2000)Google Scholar
  22. 22.
    Sanderson, M.J., Driskell, A.C.: The challenge of constructing large phylogenetic trees. Trends in Plant Science 8(8), 374–378 (2003)CrossRefGoogle Scholar
  23. 23.
    Stamatakis, A.: An efficient program for phylogenetic inference using simulated annealing. In: Proceedings of IPDPS 2005, Denver, Colorado, USA (2005)Google Scholar
  24. 24.
    Stamatakis, A., Ludwig, T., Meier, H.: Parallel inference of a 10.000-taxon phylogeny with maximum likelihood. In: Proceedings of 10th International Euro Par Conference, pp. 997–1004 (2004)Google Scholar
  25. 25.
    Stamatakis, A., Ludwig, T., Meier, H.: Raxml-iii: A fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21(4), 456–463 (2005)CrossRefGoogle Scholar
  26. 26.
    Stamatakis, A., Ott, M., Ludwig, T.: Raxml-omp: An efficient program for phylogenetic inference on smps. In: Proceedings of 8th International Conference on Parallel Computing Technologies, PaCT (2005), Preprint available on-line at
  27. 27.
    Stolk, B., Abdoelrahman, F., Koning, A., Wielinga, P., Neefs, J.M., Stubbs, A., de Bondt, A., Leemans, P., van der Spek, P.: Mining the human genome using virtual reality. In: Proceedings of the Fourth Eurographics Workshop on parallel Graphics and Visualization, pp. 17–21 (2002)Google Scholar
  28. 28.
    Tang, J., Moret, B.M.E., Cui, L., de Pamphilis, C.W.: Phylogenetic reconstruction from arbitrary gene-order data. In: Proc. 4th IEEE Conf. on Bioinformatics and Bioengineering BIBE 2004, pp. 592–599 (2004)Google Scholar
  29. 29.
    Zmasek, C.M., Eddy, S.R.: Atv: Display and manipulation of annotated phylogenetic trees. Bioinformatics 17, 383–384 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Adam Arvelakis
    • 1
    • 2
  • Martin Reczko
    • 1
  • Alexandros Stamatakis
    • 1
  • Alkiviadis Symeonidis
    • 1
    • 2
  • Ioannis G. Tollis
    • 1
    • 2
  1. 1.Foundation for Research and Technology-HellasInstitute of Computer ScienceHeraklionGreece
  2. 2.Department of Computer ScienceUniversity of CreteHeraklionGreece

Personalised recommendations