Skip to main content

Boosted Decision Trees for Diagnosis Type of Hypertension

  • Conference paper
Biological and Medical Data Analysis (ISBMDA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3745))

Included in the following conference series:

Abstract

The inductive learning algorithms are the very attractive methods generating hierarchical classifiers. They generate hypothesis of the target concept on the base on the set of labeled examples. This paper presents some of the decision tree induction methods, boosting concept and their usefulness for diagnosis of the type of hypertension (essential hypertension and five type of secondary one: fibroplastic renal artery stenosis, atheromatous renal artery stenosis, Conn’s syndrome, renal cystic disease and pheochromocystoma). The decision on the type of hypertension is made only on base on blood pressure, general information and basis biochemical data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and application to boosting. Journal of Computer and System Science 55(1), 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Freund, Y., Schapire, R.E.: Experiments with a New Boosting Algorithm. In: Proceedings of the International Conference on Machine Learning, pp. 148–156 (1996)

    Google Scholar 

  3. Jain, A.K., Duin, P.W., Mao, J.: Statistical Pattern Recognition: A Review. IEEE Transaction on Pattern Analysis and Machine Intelligence 22(1), 4–37 (2000)

    Article  Google Scholar 

  4. Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)

    MATH  Google Scholar 

  5. Opitz, D., Maclin, R.: Popular Ensemble Methods: An Empirical Study. Journal of Artificial Intelligence Research 11, 169–198 (1999)

    MATH  Google Scholar 

  6. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  7. Quinlan, J.R.: Bagging, Boosting, and C4.5. In: Proceedings of the 13th National Conference on Artificial Intelligence and Eighth Innovative Applications of Artificial Intelligence Conference, AAAI 1996, IAAI 1996, Portland, Oregon, August 4-8, vol. 1, pp. 725–230 (1996)

    Google Scholar 

  8. Schapire, R.E.: The boosting approach to machine learning: An overview. In: Proc. Of MSRI Workshop on Nonlinear Estimation and Classification, Berkeley, CA (2001)

    Google Scholar 

  9. Shapire, R.E.: The Strength of Weak Learnability. Machine Learning 5, 197–227 (1990)

    Google Scholar 

  10. Schapire, R.E.: A Brief Introduction to Boosting. In: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (1999)

    Google Scholar 

  11. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann Pub., San Francisco (2000)

    Google Scholar 

  12. Blinowska, A., Chatellier, G., Bernier, J., Lavril, M.: Bayesian Statistics as Applied to Hypertension Diagnosis. IEEE Transaction on Biomedical Engineering 38(7), 699–706 (1991)

    Article  Google Scholar 

  13. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Data Mining, Inference, and Prediction. Springer Series in Statistics. Springer, New York (2001)

    MATH  Google Scholar 

  14. Puchala, E.: A Bayes Algorithm for the Multitask Pattern Recognition Problem – direct and decomposed approach. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3046, pp. 39–45. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Koszalka, L., Skworcow, P.: Experimentation system for efficient job performing in veterinary medicine area. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3483, pp. 692–701. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wozniak, M. (2005). Boosted Decision Trees for Diagnosis Type of Hypertension. In: Oliveira, J.L., Maojo, V., Martín-Sánchez, F., Pereira, A.S. (eds) Biological and Medical Data Analysis. ISBMDA 2005. Lecture Notes in Computer Science(), vol 3745. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11573067_23

Download citation

  • DOI: https://doi.org/10.1007/11573067_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29674-4

  • Online ISBN: 978-3-540-31658-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics