A Bioinformatic Approach to Epigenetic Susceptibility in Non-disjunctional Diseases

  • Ismael Ejarque
  • Guillermo López-Campos
  • Michel Herranz
  • Francisco-Javier Vicente
  • Fernando Martín-Sánchez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3745)


The aim of this work is to present a fully “in silico” approach for the identification of genes that might be involved in the susceptibility for non disjunction diseases and their regulation by methylation processes. We have carried out a strategy based on the use of online available bioinformatics databases and programs for the retrieval and identification of interesting genes. As result we have obtained 29 putative susceptibility genes regulated by methylation processes. We were neither on the need of developing new software nor carry out clinical laboratory experiments for the identification of these genes. We consider that this “in silico” methodology is robust enough to provide candidate genes that must be checked “in vivo” due to the clinical relevance of non disjunction diseases with the aim of providing new tools and criteria for their diagnostics.


Gene Ontology Bioinformatic Approach Transcription Starting Point Database Issue Folate Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Warburton, D., Dallaire, L., Thangavelu, M., Ross, L., Levin, B., Kline, J.: Trisomy recurrence: a reconsideration based on North American data. Am. J. Hum. Genet. 75(3), 376–385 (2004)CrossRefGoogle Scholar
  2. 2.
    Gardner, R.M.J., Sutherland, G.R.: Down syndrome, other full aneuploidies and polyploidy. In: Chromosome Abnormalities and Genetic Counselling (Oxford Monographs on Medical Genetics, No. 46), 3rd edn., pp. 243–258. Oxford University Press, Oxford (2003)Google Scholar
  3. 3.
    James, S.J., Pogribna, M., Pogribny, I.P., Melnyk, S., Hing, R.J., Gibson, J.B., Yi, P., Tafoya, D.L., Swenson, D.H., Wilson, V.L., Gaylor, D.W.: Abnormal folate metabolism and mutation in the methylenetetrahydrofolate reductase gene may be maternal risk factors for Down syndrome. Am. J. Clin. Nutr. 70, 495–501 (1990)Google Scholar
  4. 4.
    Hassold, T., Hunt, P.: To err (meiotically) is human: the genesis of human aneuploidy. Nature Rev. Genet. 2, 229–280 (2002)Google Scholar
  5. 5.
    Lucock, M., Yates, Z.: Folic acid – vitamin and panacea or genetic time bomb? Nature Rev. Genet. 6, 235–240 (2005)CrossRefGoogle Scholar
  6. 6.
    Hanks, S., Coleman, K., Reid, S., Plaja, A., Firth, H., Fitzpatrick, D., Kidd, A., Mehes, K., Nash, R., Robin, N., Shannon, N., Tolmie, J., Swansbury, J., Irrthum, A., Douglas, J., Rahman, N.: Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat. Genet. 36(11), 1159–1161 (2004)CrossRefGoogle Scholar
  7. 7.
    Heim, S., Mitelman, F.: Nonrandom chromosome abnormalities in cancer. In: Cancer Cytogenetics, 2nd edn., pp. 19–32. Ed Wiley-Liss, Chichester (1995)Google Scholar
  8. 8.
    Esteller, M., Corn, P.G., Baylin, S.B., Herman, J.G.: A gene hypermethilation profile of human cancer. Cancer Res. 61(8), 3225–3229 (2001)Google Scholar
  9. 9.
    Paz, M.F., Fraga, M.F., Avila, S., Guo, M., Pollan, M., Herman, J.G., Esteller, M.: A systematic profile of DNA methylation in human cancer cell lines. Cancer Res. 63(5), 1114–11121 (2003)Google Scholar
  10. 10.
    Paz, M.F., Avila, S., Fraga, M.F., Pollan, M., Capella, G., Peinado, M.A., Sanchez-Cespedes, M., Herman, J.G., Esteller, M.: Germ-line variants in methyl-group metabolism genes and susceptibility to DNA methylation in normal tissues and human primary tumours. Cancer Res. 62(15), 4519–4524 (2002)Google Scholar
  11. 11.
    Esteller, M.: CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 21(35), 5427–5440 (2002)CrossRefGoogle Scholar
  12. 12.
    Antequera, F., Bird, A.: Number of CpG islands and genes in human and mouse. Proc Natl. Acad. Sci. U S A 90(24), 11995–11999 (1993)CrossRefGoogle Scholar
  13. 13.
    Galperin, M.Y.: The Molecular Biology Database Collection: 2005 update. Nucleic Acids Research 33, 5–24 (2005) (Database issue) CrossRefGoogle Scholar
  14. 14.
    Wain, H.M., Lush, M., Ducluzeau, F., Povey, S.: Genew: the human gene nomenclature database. Nucleic Acids Res. 30(1), 169–171 (2002)CrossRefGoogle Scholar
  15. 15.
    Hamosh, A., Scott, A.F., Amberger, J.S., Bocchini, C.A., McKusick, V.A.: Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 33, D514–D517 (2005) (Database issue)CrossRefGoogle Scholar
  16. 16.
    Wheeler, D.L., Church, D.M., Edgar, R., Federhen, S., Helmberg, W., Madden, T.L., Pontius, J.U., Schuler, G.D., Schriml, L.M., Sequeira, E., Suzek, T.O., Tatusova, T.A., Wagner, L.: Database resources of the National Center for Biotechnology Information: update. Nucleic Acids Res. 1(32), 35–40 (2004)CrossRefGoogle Scholar
  17. 17.
    Maglott, D., Ostell, J., Pruitt, K.D., Tatusova, T.: Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res. 33, D54–D58 (2005) (Database issue)CrossRefGoogle Scholar
  18. 18.
    Rice, P., Longden, I., Bleasby, A.: EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16(6), 276–277 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ismael Ejarque
    • 1
    • 2
  • Guillermo López-Campos
    • 2
  • Michel Herranz
    • 3
  • Francisco-Javier Vicente
    • 2
  • Fernando Martín-Sánchez
    • 2
  1. 1.Ambulatorio di Genetica MedicaOspedale GallieraGenovaItaly
  2. 2.Medical Bioinformatics DepartmentInstitute of Health Carlos IIIMajadahonda. MadridSpain
  3. 3.Cancer Epigenetics Laboratory, Molecular Pathology ProgramSpanish National Cancer CentreMadridSpain

Personalised recommendations